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Abstract limit. Strategies with these properties are said to bsuib-

jective equilibrium which is stable with respect to learning
and optimization. One way (and possibly the only way in
the absence of any information about the other agent’s true

We analyze the asymptotic behavior of agents engaged in an
infinite horizon partially observable stochastic game as for-
malized by the interactive POMDP framework. We show that

when agents’ initial beliefs satisfy a truth compatibility con- strategy) to satisfy the truth compatibility condition onmop
dition, their behavior converges to a subjectivequilibrium beliefs is to consider beliefs that assign a non-zero priébab
in a finite time, and subjective equilibrium in the limit. This ity to each possible strategy of other agents. In other words

result is a generalization of a similar result in repeated games,  the beliefs must have grain of truth However, for the
to partially observable stochastic games. However, it turns  space of computable strategies, we show by borrowing a re-
out that the equilibrating process is difficult to demonstrate gyt from Nachbar and Zame (1996) that it is impossible for
computationally because of the difficulty in coming up with all the agents’ beliefs that assign some non-zero probabil-
initial beliefs that are both natural and satisfy the truth com- ity to each possible strategy of the others, to simultarigous
patibility condition. Our results, therefore, shed some nega- . . . A .
tive I_ightlon usi_ng equilibria as asolution_ concept for decision Saﬂséy thengrtaln of gu;htzssu)r(?ﬁt'%n' th!clr? this r}ﬁgﬁtl\&e ;er
making in partially observable stochastic games. sult does not quesiion the existence ot the equilibnum no
does it preclude reaching the equilibrium, it does point out
. the difficulty in guaranteeing it within the I-POMDP frame-
Introduction work. Specifically, prior beliefs that satisfy the truth com
We analyze the asymptotic behavior of agents participat- patibility condition must be unnatural — the agents will @av
ing in an infinite horizon partially observable stochastic to start the game convinced that others will not act accgrdin
game (POSG) formalized within the framework of interac- to some strategies.

tive POMDPs (I-POMDPs) (Gmytrasiewicz & Doshi 2005; In prior work, Kalai and Lehrer (1993a; 1993b) have

20042.' I'P?MDPS m;)dell a!”d stﬁlve a POS(_Brgrom the peL- shown that the strategies of agents engaged in infinitely re-
spective ot an agent piaying the game. IS approach, peated games with discounted payoffs, who are unaware

also called the decision-theoretic approach to game the- ) : :

. 9t of others’ strategies, and under the assumptions of perfect
ory (Kta(:;llane%lp_grls%y 1982),t:1_llffedr§ fro;ln the obgctwe;gp- g, Observability of others’ actions (perfect monitoring) and
resentation o $ as outlined in (Hansen, Bemnstein, truth compatibility of prior beliefs will converge to a sub-

Zilberstein 2004). We consider the setting in which an agent . .. AT : ;
may be unaware) of the other agents’ behgavioral strategiges i ective eqwhbnum. We generallze. th'-s resul_t.by sh(_)w-
: . ; X . '~ ing the asymptotic existence of subjective equilibrium in a
IS uncfertalun %bOUt thﬁ'r otr)]servatlons:, an'd It may bemlrjgable more general and realistic multiagent setting, one in which
\t/(\zi t?]eégcé)s/ignstzleé\éies;[or? '?hteg a%ﬁgt: 2‘;‘,{'?2;“:& ﬁ]%can daS _ the assumptions of perfect observability of state and oth-
ates yb of about the oh Y, | tgt | oo theest f ers’ actions have been relaxed. Additionally, we address
ates ;tsh e 'i abouttne p ggmaa state as we bas estral e research problem posed in (Kalai & Lehrer 1993a) re-
gies of the other agents, and its decisions are best response o, 4ing the existence of subjective equilibrium in POSGs.

to its beliefs. X . -
. - A Hahn (1973) introduced the concept otanjectural equi-
Under the condition of compatibility of agents’ prior be- Iibrium( in egonomies where the si%nals g;eneratedqby the

liefs about future observations with the true distribution economy do not cause changes in the agents’ theories, nor
duced by the actual strategies of all agents, we show that for 4, ey induce changes in the agents’ policies. Fudenberg
agents modeled within the I-POMDP framework, the fol- and Levine (1993) consider a general model of finitely re-

lowing properties hold{) the agents’ beliefs about the fu- o510 extensive form games wherein strategies of oppo-
ture observation paths of the game coincide in the limit with nents may be correlated (unlike (Kalai & Lehrer 1993a)

lth? trug dlfir;]butmn overtth,e ';Ut‘t”ez a'('g) thetagrt]%nts’ be- the WWhere strategies are assumed independent), and show that
I€1S about the opponents: strategies do not change In e .o pahavior of agents that maintain beliefs and optimize

Copyright © 2006, American Association for Artificial Intelli- according to their beliefs, converges toself-confirming
gence (www.aaai.org). All rights reserved. equilibrium There is a strong link between the subjective



equilibrium and its objective counterpart — the Nash equi-
librium. Specifically, under the assumption of perfect mon-
itoring, both Kalai and Lehrer (1993a) and Fudenberg and
Levine (1993) show that the strategy profile in subjective
and self-confirming equilibrium induce a distribution over
the future action paths that coincides with the distributio
duced by a set of strategies in Nash equilibrium. Of course,
this does not imply that strategies in subjective equilibri
are also in Nash equilibrium; however, the converse is al-
ways true. While proving a similar link between subjective
and Nash equilibrium for POSGs is beyond the scope of this
paper, we conjecture its existence. Work of a similar vein is

have preferences over the physical states and actions of all
agents.

The task of computing a solution for an I-POMDP, similar
to that of a POMDP, can be decomposed into the two steps
of belief update and policy computation.

Bayesian Belief Update

There are two differences that complicate state estimation
in multiagent settings, when compared to single agent ones.
First, since the state of the physical environment depends o
the actions performed by both agents, the prediction of how
the physical state changes has to be made based on the pre-

reported in (Jordan 1995). It assumes agents have a commondicted actions of the other agent. The probabilities of ashe
prior over the possible types of agents engaged in a repeatedactions are based on its models. Thus, as opposed to the lit-
game, and shows that the sequence of Bayesian-Nash equi-erature on learning in repeated games, we do not assume

librium beliefs of agents converges to a Nash equilibrium.

Overview of Interactive POMDPs

Interactive POMDPs (Gmytrasiewicz & Doshi 2005; 2004)
generalize POMDPs to account for the presence of other
agents in the environment. They do this by including mod-
els of other agents in the state space. Models of other ggents
analogous tdypesin game theory, encompass all private in-
formation influencing their behavior.

For simplicity of presentation let us consider an agént,
that is interacting with one other agert, The formalism
easily generalizes to a larger number of agents.

Definition 1 (I-POMDP). Aninteractive POMDPf agent
1, I-POMDP;, is:

I-POMDP; = (IS;, A, T;,;,0;, R;)

where:

e [S; is a set ofinteractive states defined akS; = S x
(O; x Mj), whereS is the set of states of the physical
environment, andO; x M) is the set of pairs consisting
of a possible observation function and a model of agent
Each model;m; € M;, is a pairm; = (h;,7;), where
m; + H; — A(A;j) is j’'s policy tree (strategy), assumed
computablé', which maps possible histories $§ observa-
tions to distributions over its actiofsh; is an element of
H;2 0; € 0;, also computable, specifies the way in which
the environment is supplying the agent with its input.

o A= A; x Aj; is the set of joint moves of all agents

e T; is a transition function7; : S x A x S — [0, 1] which
describes results of agents’ actions on the physical state
e (), is the set of agents observations

¢ O; is an observation function); : S x A x Q; — [0, 1]

e R; is defined ask; : S x A — R. We allow the agent to

We assume computability in the Turing machine sense, i.e.
strategies are (total) recursive functions.

Note that if|A;| > 2, then the space of policy trees is un-
countable; however, by assuming to be computable, we restrict
the space to be countable.

3In (Gmytrasiewicz & Doshi 2005; 2004\, x M;) is re-
placed with a special class of models callatentional models
These models ascribe beliefs, preferences, and rationality to other
agents. We do not introduce those models here for the purpose of
generality.

that actions are fully observable by other agents. Rather,
agents can attempt to infer what actions other agents have
performed by sensing their results on the environment. Sec-
ond, changes in the models of other agents have to be in-
cluded in the update. Specifically, update of the other &gent
models due to its new observation must be included. In other
words, the agent has to update its beliefs based on what it
anticipates that the other agent observes and how it updates
Consequently, an agent’s beliefs record what it thinks aibou
how the other agent will behave as it learns. For simplicity
we decompose the I-POMDP belief update into two steps:

¢ Prediction: When an agent, say with a previous belief,
bi~t, performs a control action!™* and if the other agent

performs its actiomz;‘l, the predicted belief state is,

Pr(ist|a;~", a7t b7 = bl (is)
ISt=1:(£5,0;)t1=(f;,0;)*
><Pr(a§._1 |m;)T; (st~ L, aE_l, a;i_l, st)
x> 0;(s',al ", a7t wh)S(APPENDR, ™, wh) — hf)
| &

whered is the Kronecker delta function, and APPEND)
returns a string in which the second argument is appended to
the first.

e Correction: When agent perceives an observation/,

the intermediate belief stat&r(-ja} ', a’~",b""), is cor-
rected according to,

Pr(ist|wt,al™ " b7 = a 3 Oi(st,al ™, az-flawf)
t—1
a
xPr(ist\ag_l,az._l,bf_l)
2)

whereq is the normalizing constant. The update extends to
more than two agents in a straightforward way.

Policy Computation

Each belief state in an I-POMDP has an associated value
reflecting the maximum payoff the agent can expect in this
belief state:

V(b;) = max
a;

i

{ZERi(is,ai)bi(is)—i—'y > Pr(w;la;, b;)
is w; €€
XV(SE(bivaiawi))}

®3)



where,ER;(is,a;) = >, R;(is,a;,a;)Pr(a;|m;) (since
is = (s,m;)). Equation '3 is a basis for value iteration in
[-POMDPs. As shown in (Gmytrasiewicz & Doshi 2005),
the value iteration converges in the limit.

Agenti’s optimal actiona}, for the case of infinite hori-
zon criterion with discounting, is an element of the set of
optimal actions for the belief stat®,PT'(b;), defined as:

OPT(b;) = argma:c{ZERi(is, a;)b;(is)+
a; €A; s (4)
Y Z P7(wz|a1,b1)V(SE(bl,az,wz))}
w; €Q;
whereSE(b;, a;,w;) is an abbreviation of the belief update
of agenti. Equation 4 enables the computation of a policy
tree, 7;, for each beliefo;. The policy, 7;, givesi's best

Subjective Equilibrium in -POMDPs

Previously, we reviewed a framework for two-agent POSG
in which each agent computes the discounted infinite hori-
zon strategy which is the subjective best response of the
agent to its belief. During each step of game play, the agent
starting with a prior belief revises it in light of the new anf
mation using the Bayesian belief update process, and com-
putes the optimal strategy given its beliefs. The lattep ste
is equivalent to using its observation history to index into
its policy tree (computed offline using the process given in
Egs. 3 and 4) to compute the best response future strategy.

Truth Compatible Beliefs

We investigate the asymptotic behavior of agents playing
an infinite horizon POSG, in which each agent learns and

response long term strategy for the belief and subsequent optimizes. Sequential behavior of agents in a POSG may

observations.

Background: Stochastic Processes, Martingales,
and Bayesian Learning

be represented using their observation histories. For an
agent, sayi, let w! be its observation at time step Let
¢ ]. An observation history of the game is a se-

wh = [wf, Wk
The set of all histories is,

quenceh = {wt},t =1,2,....

A stochastic process is a sequence of random variables, H = U2, Q" whereQ! = II! (©; x ;). The set of ob-

{X:},t =0,1,..., whose values are realized one at a time.

servation histories upto timeis, H* = IT{ (; x €;), and

Well-known examples of stochastic processes are Markov the set of future observation paths from timenwards is,

chains, as well as sequences of beliefs updated using the H;
Bayesian update. Bayesian learning turns out to exhibit an

additional property that classifies it as a special type @f st
chastic process, called a Martingale.

A Martingale is a stochastic process that, for any observa-

tion history up to time, h?, exhibits the following property:
E[X)|h') = X, 1>t

Consequently, for all future time poinis> ¢ the expected

change E[X; — X;|h'] = 0. A sequence of an agent's be-

liefs updated using Bayesian learning is known to be a Mar-

tingale. Intuitively, this means that the agent’s currestt-e

mate of the state is equal to what the agent expects its future
estimates of the state will be, based on its current observa-
tion history. Because the Martingale property of Bayesian

learning is central to our results, we sketch a formal proof
Let an agent’s initial belief over some statec ©, be
Xo = Pr(6). The agent receives some observationjn
the future according to a distributiah that depends o#.
Let the future revised belief b&; = Pr(f|w). By Bayes
theorem,Pr(0|w) = ¢(w|0)Pr(0)/Pr(w). We will show

that E[Pr(0|w)] = Pr(6)

BPr()] = LPr(l)Pri) = LB Pr)
= S6(wl0) Pr(6) = Pr(0)Y ¢ (w]6)
= Pr(0) = Xq ©

The above result extends immediately to observation his-

tories of any lengtht. Formally, F[X;,1|h!] = X, there-
fore the beliefs satisfy the Martingale property. All Makti
gales share the following convergence property:
Theorem 1(Martingale Convergence Theorefid(of Chap-
ter 7 in (Doob 1953)) If {X;},t =0,1,...is a Martingale
with E[X?] < U < oo for someU and all ¢, then the se-
qguence of random variable$,X;}, converges with proba-
bility 1 to someX, in mean-square.

= H?O(Ql X Qj)

Example: We use the multiagent tiger problem described
in (Gmytrasiewicz & Doshi 2005) as a running example
throughout this paper. Briefly, the problem consists of two
doors, behind one is a tiger and behind the other is some
gold, and two agents andj. The agents are unaware of
where the tiger is (TL or TR), and each can either open any
one of two doors, or listen (OL,OR, or L). On opening any
door, the tiger appears randomly behind a door, the next
time. A tiger emits a growl! periodically, which reveals its
position behind a door (GL or GR) but only with some cer-
tainty. Additionally, each agent can also hear a creak with
some certainty, if the other agent opens a door (CL,CR, or
S). We will assume that neither agent can perceive other’s
observations nor actions. The problem is non-cooperative
since either or j may open a door, thereby reseting the lo-
cation of the tiger, and rendering any information collecte
by the other agent about the tiger’s location useless tocit. E
ample histories in the multiagent tiger problem are shown in
Fig. 1.

In the I-POMDP framework, each agent’s belief over the
physical state and others’ candidate models, together with
the agent’s perfect information regarding its own model, in
duces a predictive probability distribution over the fetob-
servation paths. These distributions play a critical roleur
analysis; we represent them mathematically using a collec-
tion of probability measurequ}, &k = 0,4, j defined over
the spacel/ x H, whereM = M, x M; andH is as defined
previously, such that,

1. po is the objective true distribution over models of each

agent and the histories,

2. proju,, e = Proju,, po = Om, k=17

Here, condition 2 states that each agent knows its
own model §,,, is the Kronecker delta function). Ad-
ditionally, projg po gives the true distribution over the



(bbb the other agent. Since an agent has no way of knowing the

]

<BLS><CLS27 /% o SQERCR><CRCR> true model of its opponent from beforehand, it must assign
L L O rosbR O a non-zero probability to each candidate model of the other
agent. We emphasize that the grain of truth assumption on
L R LD B the agents’ prior beliefs is a stronger assumption than ACC.
%(%C\W <GLS<EL o ;M> In other words, as we show later, it is possible to satisfy the

ACC while violating the grain of truth assumption.

[TL,OR,0OR] [TLLL]  [TLLL] [TL,L,L]

: : Subjective Equilibrium

‘ ) Truth compatible beliefs of an agent that performs Bayesian
Figure 1:Observation histories in the infinite horizon multiagent learning tend to COnverge in the limit to the ppponent
tiger problem. The nodes represent the state of the problem and Model(s) that most likely generates the observations of tbe
play of agents, while the edges are labeled with the possible joint agent. In the context of the I-POMDP framework, an agent’s
observations. This example starts with the tiger on the left and each belief over the other's models updated using the process out
agent listening. Each agent may receive one of six observations lined in Egs. 1 and 2, will converge in the limit. Formally,

Elgsbueitlisnorgéngfarrows), and performs an action that optimizes its Proposition 1 (Bayesian Learning in I-POMDPSs)For an
g ' agent in the I-POMDP framework, if its initial belief over

o ] o ] the other’'s models satisfies the ACC, its posterior belidfs w
histories as induced by the initial strategy profile, and converge with probability 1.

proju wi(-|6Y) for k = i, gives the predictive prob- . o
ability distribution for each agent over the observation Proof. As we proved before, Bayesian learning is a Mar-
histories at the start of the ganfe For some finite history, ~ tingale. Set® = M;, and¢ = O;. Noting that the

ht € H!, the calculation ofproji u(-|bY) proceeds I-POMDP belief update is Bayesian, its Martingale prop-
in an inductive manner. 1, (-|b9) over empty histories  erty follows from applying the proof appropriately. In or-
is 1, and projne pui(-8)) = projp-ine px(-p)) = der to apply Theorem 1 to the I-POMDP belief update, set
Projyi-1 pe(C) % Pr(w! wtath), where X, = Pr;(m;|hl) whereh! is agenti's observation history

Pr(wf,wthi=1) is the marginalized joint observation — up to timet. Let b denotePr;(m;|ht) andEﬂC be a possible
probability. belief of agenti about;’s models, at time. We must first
. 2 e
If the actual sequence of observations in the game does SNOW thatE[X 7] is bounded.
not proceed along a path that is assigned some positive pre- B2 = Z(‘Ailmil)t b= 2P ()
dictive probability by an agent, then the agent’s obseovesti d T k=1 i i i

would contradict its beliefs and the Bayesian update would = ng{”ﬂ’h ZMj Bf(mjﬁPr@“) (L3 norm)
not be possible. Clearly, it is desirable for each agent's in < Z(‘Aillﬂil)t 1. Pr(gz_c)
tial belief to assign a non-zero probability to each realiz- —1 k=1 !

able observation history; this is called the truth comphtib - _ _
ity condition. To formalize this condition we need a notion Proposition 1 now follows from a straightforward applica-

of absolute continuity of two probability measures. tion of Theorem 1. O
Definition 2 (Absolute Continuity) A probability measure The above result does not imply that an agent’s belief al-
p1 is absolutely continuous with,, denoted ag: < po, if ways converges to the true model of the other agent. This
p2(E) = 0impliesp, (E) = 0, for any measurable séi. is due to the possible presenceobiervationally equivalent

Condition 1 (Absolute Continuity Condition (ACC))ACC models of the other agent. For example, for ageall mod-
holds for any agent = i, j if projy o < proju s (-|b). els of j that induce identical distributions over all possible

future observation paths are said to be observationallivequ
. L alent. When a particular observation history obtains, agent

Condition 1 states that the probability distributioninddc s ynable to distinguish between the observationally eguiv
by an agent's initial belief on observation histories skoul  |ent models ofj. In other words, observationally equivalent
not rule out positive probability events according to thelre  mogels generate distinct behaviors for histories which are
probability distribution on the histories. A sure way to-sat  never observed. Models that are observationally equivalen
isfy ACC is for each agents initial belief to have grain of to the true model are also the reason why it is possible for
truth” — assign a non-zero probability to the true model of  prior beliefs to violate the grain of truth assumption, aed y
satisfy ACC.

Example:For an example of observationally equivalent
models, consider a version of the multiagent tiger game in
prior once an agent knows its own model. which the tiger persists behind its original door once any

SLet F* be thes-algebra generated oveF, on whichyu, (-[62) door has been opened. Additionaliyhas superior obser-
is defined. Thenu(-2) over the infinite observation paths is ~ Vvation capabilities compared tf and each agent is able
defined over the minimat-algebra (Borel algebra) containing all ~ to perfectly observe other’s actions but observes the growl
Fs. imperfectly. Leti's utility dictate that it will not open any

“Following (Jordan 1995; Nyarko 1997) the unconditional mea-
sure ur may be seen as a prior before an agent knows its own
model, andu; along with the conditions defined here asmterim



doors until it's 100% certain that the tiger is behind the
opposite door. The corresponding strategy #as to lis-

ten for an infinite number of time steps. Suppose that as
a best response to its beligf,were to adopt a strategy in
which it would listen for an infinite number of steps, but
if at any time< opened a door, it would also do so at the
next time step and then continue opening the same door.
The true distribution assigns a probability 1 to the histo-
ries{[(GL|GR, S),(GL|GR, S)]}$°. Instead of the above
mentioned strategy if were to adopt a follow-the-leader
strategy, i.e.j performs the action whichdid in the previ-
ous time step, then the true distribution would again assign
probability 1 to the previously mentioned histories. The tw
different strategies of turn out to be observationally equiv-
alent for:.

An immediate consequence of the convergence of
Bayesian learning is that the predictive distribution aer
future observation paths induced by an agent’s belief after
finite sequence of observation$, projp,,, wx(-|b,ht),
k=i,j becomes arbitrary close to the true distribution,
proju,., to(-|k'), for afinitet, and converges uniformly in
the limit. This result is important because it establistned t
no matter what the initial beliefs of the agents about the fu-
ture are, provided that these beliefs are truth compatiée,
agents’ opinions (about the future) will merge and corgectl
predict the true future in the limit. This result was firstedt
in (Blackwell & Dubins 1962); we present it below and refer
the reader to the paper for its proof.

Lemma 1 (Blackwell and Dubins (1962))Suppose thaP
is a predictive probability on X, and) is absolutely con-
tinuous w.rt. P. Then for each conditional distribution
P(xyq,...,z) of the future given the past w.r.tP, there
exists a conditional distributio®®(x1,...,x;) of the fu-
ture given the past w.r.tQ such that,||P!(zq,...,x¢) —
Ql(w1,..., 3| R 0 with Q-probability 1.

We use Lemma 1 to establish predictive convergence in
the context of the I-POMDP framework.

Proposition 2 (e-Predictive Convergence in [-POMDPS)
For all agents in the I-POMDP framework, if their initial
beliefs satisfy the ACC, then for every- 0, there exists a
finite T" which is a function o¢, such that for alt > 7" and
with po-probability 1,

||pTOth+1 MU("ht)_proth-H /j‘k(‘bgv h%@)” <e for k= Za]

Proof. Referring to Lemma 1, leX = H. We observe
that proju po andproju pi(-|bY) for k = 4,5 are pre-
dictive as defined in (Blackwell & Dubins 1962). Set
Q = proju po, andP = projy p(-|b?). Subsequently,
Q" = proju,,, po(-[h"), andP* = proju,,, u(|by, hi,)-
Proposition 2 then follows immediately from a straightfor-
ward application of Lemma 1. O

We have shown that for a POSG modeled using the I-
POMDP formalism, the players’ beliefs over opponent’s
models converge in the limit if they satisfy the ACC prop-
erty. However, the limit beliefs may be incorrect, due to

the inability of agents to distinguish between observation
ally equivalent models of the opponent on the basis of the
observation history. Nevertheless, their beliefs overfthe
ture paths come arbitrary close, and remain close, to tlee tru
distribution over the future, after a finite amount of time.
Further observations will only confirm their beliefs about
the truth, and will not alter their beliefs. We capture this n
tion using the concept of a subjective equilibrium (Kalai &
Lehrer 1993a), defined as follows:

Definition 3 (Subjectivee-Equilibrium). Letdl, k = 4,j

be the agents’ beliefs at some timeA pair of policy trees,

7 = [r}, 7] is in subjective--equilibrium if,

1. nf € OPT(b}), 75 € OPT(b%)

2. Hp’l’Oth+1 /L(]('|ht) _prOth+1 Mk(|b2a hl];)” <,

1, j with a ug-probability 1.

For e = 0, subjective equilibrium obtains. Condition 1 of
subjectivee-equilibrium states that agents are subjectively
rational, i.e. their strategies are best responses to beeir
liefs. As we mentioned before, these strategies are the pol-
icy trees computed using Egs. 3 and 4. The second condi-
tion states that the agents’ beliefs have attainrpdedictive
convergence. In other words, a strategy profile is in subjec-
tive e-equilibrium when the strategies are best responses to
agents’ beliefs that have attainegbredictive convergence.

We now establish a key result of this paper, which is that
behavior strategies of agents playing a POSG modeled using
the I-POMDP framework, attain subjectiveequilibrium in
finite time and subjective equilibrium in the limit, providie
that their initial beliefs satisfy the ACC.

Proposition 3 (Convergence to Subjective Equilibrium in
I-POMDPs) Letw = [m;,7;] be the strategies of agents
1 and j respectively, playing a POSG modeled using the I-
POMDP formalism. Leb) andb be their initial beliefs. If
the following conditions are met,

1. m € OPT(b?),ﬂ'j € OPT(b(;)

2. proju po < proju pk(-bY), k=1i,j (ACC)

then for anye > 0, and for all ug-positive probability histo-
ries, there exists some finite time st€pwhich is a func-
tion of ¢, such that for allt > T, the strategy profile,
7 = [r}, 7] is in subjective--equilibrium where,

e b; andb! are the agents’ beliefs at time

o wf € OPT(b}), 7t € OPT(b})

k

Proof. Proposition 3 follows in part from Proposition 2, and

in part from noting that agents in the I-POMDP framework
compute strategies that are best responses to their posteri
beliefs at each time step, and that the beliefs are updated
using their observation history. O

Strategy profiles in subjectiveequilibrium for arbitrarily
smalle > 0 are stable. Specifically, further play will bring
agents’ beliefs over the future closer to the truth statdiy,
and the corresponding strategy profiles will remain in the
subjectivec-equilibrium. Note that ACC is a sufficient con-
dition, but not a necessary one. An example setting in which
even though ACC is violated, yet subjectiwequilibrium
still results is given in (Kalai & Lehrer 1993a).



Limitations

Recall that in order to guarantee subjective equilibriuma, t
agents’ prior beliefs must satisfy the ACC condition. We
now investigate how to satisfy this condition. As we men-
tioned previously, since an agent has no way of knowing the
true model of the other a’priori, it must assign some proba-
bility to all possible models of the other agent. As a result,
agents’ beliefs will exhibit a grain of truth. However, umde
the assumption of computability of the agents’ strategies,
observe that it is impossible for all the agents’ beliefsito s
multaneously satisfy the grain of truth. In order to shows thi
we borrow a result from (Nachbar & Zame 1996).

Lemma 2 (Nachbar and Zame (1996)There exists a sub-
game perfect equilibrium strategy profilerr{ m2], for
which w5 is computable, and no exact best responseto
is computable.

Proposition 4 (Impossibility Result) Within the -POMDP
framework, agents’ prior beliefs that assign a non-zero
probability to all possible models of the other, cannot dimu
taneously satisfy the grain of truth assumption.

Proof. We first note that within the I-POMDP framework,
the model spaces)/; and M, are restricted to the set of
computable models. Léf) be agent’s initial belief that
assigns a non-zero probability to all models\ii}. Lemma 2
implies that the support @f must contain a strategy gffor
which no computable best response exists. This implies that
OPT (b)) —i's best response strategy to its belief — is not
computable, since in computing OPT, we must enumerate
all possible models of. Therefore,j’s belief that has a full
support inM;, fails to account for the true strategyof O

Consequences of this negative result point toward a sub-
tle tension between learning (to predict the true distrdut
over the observation histories) and optimization. Indeed,
Binmore indicates in (1982), this conflict is at the heart of
why perfect rationality is an unattainable ideal. Binmore
proves that a Turing machine cannot always predict truth-
fully the behavior of an opponent Turing machine (given its
complete description) and optimize simultaneously. Simil
guestions about the plausibility of realizing the subjexti
equilibrium in repeated games have also been raised, for ex-

ample see (Nachbar 1997). We emphasize that Proposition 4

applies only toexactbest responses. One may always find
a computable-optimal response by optimizing over a long
enough finite horizon.

While Proposition 4 does not question the existence of
equilibrium, it bears relevance to whether the equilibrium
can be realized. The implication of Proposition 4 is that
it is difficult to satisfy the truth compatibility conditiom
practice, and therefore ensure convergence to equilibrium
Consequently, our results cast a negative shadow on using
equilibrium as a solution concept for POSGs formalized by
the I-POMDP framework.

Discussion

In this paper we theoretically analyzed the play of agents en
gaged in a POSG formalized using the interactive POMDP

framework. In particular, we have considered subjectively
rational agents which may not know others’ strategies.
Therefore, they maintain beliefs over the physical state an
models of other agents and optimize with respect to their be-
liefs. Within this framework, we first proved that if agents’
beliefs satisfy a truth compatibility condition, then stgies

of agents that learn and optimize converge to the subjective
equilibrium in the limit, and subjective-equilibrium for ar-
bitrarily smalle > 0 in finite time. This result is a gen-
eralization of a similar result in repeated games, to POSGs
as formalized by the I-POMDP framework. Secondly, we
argued about the implausibility of satisfying the truth com
patibility condition and therefore reaching the equilitmiin
practice. Our results therefore bear relevance to the motio
of using equilibrium for solving POSGs. As part of future
work, we are investigating the relation between subjective
and Nash equilibrium. Since a link between the two has al-
ready been established for repeated games, its existence fo
POSGs can be speculated.
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