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Abstract

We analyze the asymptotic behavior of agents engaged in an
infinite horizon partially observable stochastic game as for-
malized by the interactive POMDP framework. We show that
when agents’ initial beliefs satisfy a truth compatibility con-
dition, their behavior converges to a subjectiveǫ-equilibrium
in a finite time, and subjective equilibrium in the limit. This
result is a generalization of a similar result in repeated games,
to partially observable stochastic games. However, it turns
out that the equilibrating process is difficult to demonstrate
computationally because of the difficulty in coming up with
initial beliefs that are both natural and satisfy the truth com-
patibility condition. Our results, therefore, shed some nega-
tive light on using equilibria as a solution concept for decision
making in partially observable stochastic games.

Introduction
We analyze the asymptotic behavior of agents participat-
ing in an infinite horizon partially observable stochastic
game (POSG) formalized within the framework of interac-
tive POMDPs (I-POMDPs) (Gmytrasiewicz & Doshi 2005;
2004). I-POMDPs model and solve a POSG from the per-
spective of an agent playing the game. This approach,
also called the decision-theoretic approach to game the-
ory (Kadane & Larkey 1982), differs from the objective rep-
resentation of POSGs as outlined in (Hansen, Bernstein, &
Zilberstein 2004). We consider the setting in which an agent
may be unaware of the other agents’ behavioral strategies, it
is uncertain about their observations, and it may be unable
to perfectly observe the other agents’ actions. In accordance
with Bayesian decision theory, the agent maintains and up-
dates its belief about the physical state as well as the strate-
gies of the other agents, and its decisions are best responses
to its beliefs.

Under the condition of compatibility of agents’ prior be-
liefs about future observations with the true distributionin-
duced by the actual strategies of all agents, we show that for
agents modeled within the I-POMDP framework, the fol-
lowing properties hold:(i) the agents’ beliefs about the fu-
ture observation paths of the game coincide in the limit with
the true distribution over the future, and(ii) the agents’ be-
liefs about the opponents’ strategies do not change in the
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limit. Strategies with these properties are said to be insub-
jective equilibrium, which is stable with respect to learning
and optimization. One way (and possibly the only way in
the absence of any information about the other agent’s true
strategy) to satisfy the truth compatibility condition on prior
beliefs is to consider beliefs that assign a non-zero probabil-
ity to each possible strategy of other agents. In other words,
the beliefs must have agrain of truth. However, for the
space of computable strategies, we show by borrowing a re-
sult from Nachbar and Zame (1996) that it is impossible for
all the agents’ beliefs that assign some non-zero probabil-
ity to each possible strategy of the others, to simultaneously
satisfy the grain of truth assumption. While this negative re-
sult does not question the existence of the equilibrium nor
does it preclude reaching the equilibrium, it does point out
the difficulty in guaranteeing it within the I-POMDP frame-
work. Specifically, prior beliefs that satisfy the truth com-
patibility condition must be unnatural – the agents will have
to start the game convinced that others will not act according
to some strategies.

In prior work, Kalai and Lehrer (1993a; 1993b) have
shown that the strategies of agents engaged in infinitely re-
peated games with discounted payoffs, who are unaware
of others’ strategies, and under the assumptions of perfect
observability of others’ actions (perfect monitoring) and
truth compatibility of prior beliefs will converge to a sub-
jective equilibrium. We generalize this result by show-
ing the asymptotic existence of subjective equilibrium in a
more general and realistic multiagent setting, one in which
the assumptions of perfect observability of state and oth-
ers’ actions have been relaxed. Additionally, we address
the research problem posed in (Kalai & Lehrer 1993a) re-
garding the existence of subjective equilibrium in POSGs.
Hahn (1973) introduced the concept of aconjectural equi-
librium in economies where the signals generated by the
economy do not cause changes in the agents’ theories, nor
do they induce changes in the agents’ policies. Fudenberg
and Levine (1993) consider a general model of finitely re-
peated extensive form games wherein strategies of oppo-
nents may be correlated (unlike (Kalai & Lehrer 1993a)
where strategies are assumed independent), and show that
the behavior of agents that maintain beliefs and optimize
according to their beliefs, converges to aself-confirming
equilibrium. There is a strong link between the subjective



equilibrium and its objective counterpart – the Nash equi-
librium. Specifically, under the assumption of perfect mon-
itoring, both Kalai and Lehrer (1993a) and Fudenberg and
Levine (1993) show that the strategy profile in subjective
and self-confirming equilibrium induce a distribution over
the future action paths that coincides with the distribution in-
duced by a set of strategies in Nash equilibrium. Of course,
this does not imply that strategies in subjective equilibrium
are also in Nash equilibrium; however, the converse is al-
ways true. While proving a similar link between subjective
and Nash equilibrium for POSGs is beyond the scope of this
paper, we conjecture its existence. Work of a similar vein is
reported in (Jordan 1995). It assumes agents have a common
prior over the possible types of agents engaged in a repeated
game, and shows that the sequence of Bayesian-Nash equi-
librium beliefs of agents converges to a Nash equilibrium.

Overview of Interactive POMDPs
Interactive POMDPs (Gmytrasiewicz & Doshi 2005; 2004)
generalize POMDPs to account for the presence of other
agents in the environment. They do this by including mod-
els of other agents in the state space. Models of other agents,
analogous totypesin game theory, encompass all private in-
formation influencing their behavior.

For simplicity of presentation let us consider an agent,i,
that is interacting with one other agent,j. The formalism
easily generalizes to a larger number of agents.

Definition 1 (I-POMDP). An interactive POMDPof agent
i, I-POMDPi, is:

I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉

where:
• ISi is a set ofinteractive states defined asISi = S ×
〈Oj × Mj〉, whereS is the set of states of the physical
environment, and〈Oj × Mj〉 is the set of pairs consisting
of a possible observation function and a model of agentj.
Each model,mj ∈ Mj , is a pairmj = 〈hj , πj〉, where
πj : Hj → ∆(Aj) is j’s policy tree (strategy), assumed
computable1, which maps possible histories ofj’s observa-
tions to distributions over its actions.2 hj is an element of
Hj .3 Oj ∈ Oj , also computable, specifies the way in which
the environment is supplying the agent with its input.
• A = Ai × Aj is the set of joint moves of all agents
• Ti is a transition function,Ti : S × A × S → [0, 1] which
describes results of agents’ actions on the physical state
• Ωi is the set of agenti’s observations
• Oi is an observation function,Oi : S × A × Ωi → [0, 1]
• Ri is defined asRi : S × A → R. We allow the agent to

1We assume computability in the Turing machine sense, i.e.
strategies are (total) recursive functions.

2Note that if |Aj | ≥ 2, then the space of policy trees is un-
countable; however, by assumingπj to be computable, we restrict
the space to be countable.

3In (Gmytrasiewicz & Doshi 2005; 2004),〈Oj × Mj〉 is re-
placed with a special class of models calledintentional models.
These models ascribe beliefs, preferences, and rationality to other
agents. We do not introduce those models here for the purpose of
generality.

have preferences over the physical states and actions of all
agents.

The task of computing a solution for an I-POMDP, similar
to that of a POMDP, can be decomposed into the two steps
of belief update and policy computation.

Bayesian Belief Update
There are two differences that complicate state estimation
in multiagent settings, when compared to single agent ones.
First, since the state of the physical environment depends on
the actions performed by both agents, the prediction of how
the physical state changes has to be made based on the pre-
dicted actions of the other agent. The probabilities of other’s
actions are based on its models. Thus, as opposed to the lit-
erature on learning in repeated games, we do not assume
that actions are fully observable by other agents. Rather,
agents can attempt to infer what actions other agents have
performed by sensing their results on the environment. Sec-
ond, changes in the models of other agents have to be in-
cluded in the update. Specifically, update of the other agent’s
models due to its new observation must be included. In other
words, the agent has to update its beliefs based on what it
anticipates that the other agent observes and how it updates.
Consequently, an agent’s beliefs record what it thinks about
how the other agent will behave as it learns. For simplicity
we decompose the I-POMDP belief update into two steps:
• Prediction: When an agent, sayi, with a previous belief,
bt−1
i , performs a control actionat−1

i and if the other agent
performs its actionat−1

j , the predicted belief state is,

Pr(ist|at−1
i , at−1

j , bt−1
i ) =

∑
ISt−1:(fj ,Oj)t−1=(fj ,Oj)t

bt−1
i (is)

×Pr(at−1
j |mj)Ti(s

t−1, at−1
i , at−1

j , st)

×
∑

ωt
j

Oj(s
t, at−1

i , at−1
j , ωt

j)δ(APPEND(ht−1
j , ωt

j) − ht
j)

(1)
whereδ is the Kronecker delta function, and APPEND(·, ·)
returns a string in which the second argument is appended to
the first.
• Correction: When agenti perceives an observation,ωt

i ,
the intermediate belief state,Pr(·|at−1

i , at−1
j , bt−1

i ), is cor-
rected according to,

Pr(ist|ωt
i , a

t−1
i , bt−1

i ) = α
∑

a
t−1

j

Oi(s
t, at−1

i , at−1
j , ωt

i)

×Pr(ist|at−1
i , at−1

j , bt−1
i )

(2)
whereα is the normalizing constant. The update extends to
more than two agents in a straightforward way.

Policy Computation
Each belief state in an I-POMDP has an associated value
reflecting the maximum payoff the agent can expect in this
belief state:

V (bi) = max
ai∈Ai

{∑
is

ERi(is, ai)bi(is) + γ
∑

ωi∈Ωi

Pr(ωi|ai, bi)

×V (SE(bi, ai, ωi))

}

(3)



where,ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |mj) (since

is = (s,mj)). Equation 3 is a basis for value iteration in
I-POMDPs. As shown in (Gmytrasiewicz & Doshi 2005),
the value iteration converges in the limit.

Agent i’s optimal action,a∗
i , for the case of infinite hori-

zon criterion with discounting, is an element of the set of
optimal actions for the belief state,OPT (bi), defined as:

OPT (bi) = argmax
ai∈Ai

{∑
is

ERi(is, ai)bi(is)+

γ
∑

ωi∈Ωi

Pr(ωi|ai, bi)V (SE(bi, ai, ωi))

} (4)

whereSE(bi, ai, ωi) is an abbreviation of the belief update
of agenti. Equation 4 enables the computation of a policy
tree, πi, for each beliefbi. The policy,πi, gives i’s best
response long term strategy for the belief and subsequent
observations.

Background: Stochastic Processes, Martingales,
and Bayesian Learning
A stochastic process is a sequence of random variables,
{Xt}, t = 0, 1, . . ., whose values are realized one at a time.
Well-known examples of stochastic processes are Markov
chains, as well as sequences of beliefs updated using the
Bayesian update. Bayesian learning turns out to exhibit an
additional property that classifies it as a special type of sto-
chastic process, called a Martingale.

A Martingale is a stochastic process that, for any observa-
tion history up to timet, ht, exhibits the following property:

E[Xl|h
t] = Xt, l ≥ t

Consequently, for all future time pointsl ≥ t the expected
change,E[Xl − Xt|h

t] = 0. A sequence of an agent’s be-
liefs updated using Bayesian learning is known to be a Mar-
tingale. Intuitively, this means that the agent’s current esti-
mate of the state is equal to what the agent expects its future
estimates of the state will be, based on its current observa-
tion history. Because the Martingale property of Bayesian
learning is central to our results, we sketch a formal proof

Let an agent’s initial belief over some state,θ ∈ Θ, be
X0 = Pr(θ). The agent receives some observation,ω, in
the future according to a distributionφ that depends onθ.
Let the future revised belief beX1 = Pr(θ|ω). By Bayes
theorem,Pr(θ|ω) = φ(ω|θ)Pr(θ)/Pr(ω). We will show
thatE[Pr(θ|ω)] = Pr(θ):

E[Pr(θ|ω)] =
∑
ω

Pr(θ|ω)Pr(ω) =
∑
ω

φ(ω|θ)Pr(θ)
Pr(ω) Pr(ω)

=
∑
ω

φ(ω|θ)Pr(θ) = Pr(θ)
∑
ω

φ(ω|θ)

= Pr(θ) = X0

The above result extends immediately to observation his-
tories of any lengtht. Formally,E[Xt+1|h

t] = Xt, there-
fore the beliefs satisfy the Martingale property. All Martin-
gales share the following convergence property:
Theorem 1(Martingale Convergence Theorem (§4 of Chap-
ter 7 in (Doob 1953)). If {Xt}, t = 0, 1, . . . is a Martingale
with E[X2

t ] < U < ∞ for someU and all t, then the se-
quence of random variables,{Xt}, converges with proba-
bility 1 to someX∞ in mean-square.

Subjective Equilibrium in I-POMDPs
Previously, we reviewed a framework for two-agent POSG
in which each agent computes the discounted infinite hori-
zon strategy which is the subjective best response of the
agent to its belief. During each step of game play, the agent
starting with a prior belief revises it in light of the new infor-
mation using the Bayesian belief update process, and com-
putes the optimal strategy given its beliefs. The latter step
is equivalent to using its observation history to index into
its policy tree (computed offline using the process given in
Eqs. 3 and 4) to compute the best response future strategy.

Truth Compatible Beliefs
We investigate the asymptotic behavior of agents playing
an infinite horizon POSG, in which each agent learns and
optimizes. Sequential behavior of agents in a POSG may
be represented using their observation histories. For an
agent, sayi, let ωt

i be its observation at time stept. Let
ωt = [ωt

i , ω
t
j ]. An observation history of the game is a se-

quence,h = {ωt}, t = 1, 2, . . . . The set of all histories is,
H = ∪∞

t=1Ω
t whereΩt = Πt

1(Ωi × Ωj). The set of ob-
servation histories upto timet is, Ht = Πt

1(Ωi × Ωj), and
the set of future observation paths from timet onwards is,
Ht = Π∞

t (Ωi × Ωj).
Example: We use the multiagent tiger problem described

in (Gmytrasiewicz & Doshi 2005) as a running example
throughout this paper. Briefly, the problem consists of two
doors, behind one is a tiger and behind the other is some
gold, and two agentsi and j. The agents are unaware of
where the tiger is (TL or TR), and each can either open any
one of two doors, or listen (OL,OR, or L). On opening any
door, the tiger appears randomly behind a door, the next
time. A tiger emits a growl periodically, which reveals its
position behind a door (GL or GR) but only with some cer-
tainty. Additionally, each agent can also hear a creak with
some certainty, if the other agent opens a door (CL,CR, or
S). We will assume that neither agent can perceive other’s
observations nor actions. The problem is non-cooperative
since eitheri or j may open a door, thereby reseting the lo-
cation of the tiger, and rendering any information collected
by the other agent about the tiger’s location useless to it. Ex-
ample histories in the multiagent tiger problem are shown in
Fig. 1.

In the I-POMDP framework, each agent’s belief over the
physical state and others’ candidate models, together with
the agent’s perfect information regarding its own model, in-
duces a predictive probability distribution over the future ob-
servation paths. These distributions play a critical role in our
analysis; we represent them mathematically using a collec-
tion of probability measures,{µk}, k = 0, i, j defined over
the spaceM×H, whereM = Mi×Mj andH is as defined
previously, such that,
1. µ0 is the objective true distribution over models of each

agent and the histories,

2. projMk
µk = projMk

µ0 = δmk
k = i, j

Here, condition 2 states that each agent knows its
own model (δmk

is the Kronecker delta function). Ad-
ditionally, projH µ0 gives the true distribution over the



<GL,S><GL,CL>
<GR,CR><GR,CL>

<GR,CR><GR,CR>

[TL,L,L][TL,OR,OR] [TL,L,L]

<GR,CR><GR,CR>

<GR,CR><GR,CR><GL,S> <GL,S>

<GL,S><GL,S> <GL,S><GL,S>

[TL,L,L]

[TL,L,L] [TL,L,L] [TL,L,L] [TL,L,L]

[TL,L,L]

Figure 1:Observation histories in the infinite horizon multiagent
tiger problem. The nodes represent the state of the problem and
play of agents, while the edges are labeled with the possible joint
observations. This example starts with the tiger on the left and each
agent listening. Each agent may receive one of six observations
(labels on the arrows), and performs an action that optimizes its
resulting belief.

histories as induced by the initial strategy profile, and
projH µk(·|b0

k) for k = i, j gives the predictive prob-
ability distribution for each agent over the observation
histories at the start of the game.4 For some finite history,
ht ∈ Ht, the calculation ofprojt

h µk(·|b0
k) proceeds

in an inductive manner. µk(·|b0
k) over empty histories

is 1, and projht µk(·|b0
k) = projht−1ωt µk(·|b0

k) =
projht−1 µk(·|b0

k) × Pr(ωt
i , ω

t
j |h

t−1), where
Pr(ωt

i , ω
t
j |h

t−1) is the marginalized joint observation
probability.5

If the actual sequence of observations in the game does
not proceed along a path that is assigned some positive pre-
dictive probability by an agent, then the agent’s observations
would contradict its beliefs and the Bayesian update would
not be possible. Clearly, it is desirable for each agent’s ini-
tial belief to assign a non-zero probability to each realiz-
able observation history; this is called the truth compatibil-
ity condition. To formalize this condition we need a notion
of absolute continuity of two probability measures.

Definition 2 (Absolute Continuity). A probability measure
p1 is absolutely continuous withp2, denoted asp1 ≪ p2, if
p2(E) = 0 impliesp1(E) = 0, for any measurable setE.

Condition 1 (Absolute Continuity Condition (ACC)). ACC
holds for any agentk = i, j if projH µ0 ≪ projH µk(·|b0

k).

Condition 1 states that the probability distribution induced
by an agent’s initial belief on observation histories should
not rule out positive probability events according to the real
probability distribution on the histories. A sure way to sat-
isfy ACC is for each agent’s initial belief to have a ”grain of
truth” – assign a non-zero probability to the true model of

4Following (Jordan 1995; Nyarko 1997) the unconditional mea-
sureµk may be seen as a prior before an agent knows its own
model, andµk along with the conditions defined here as aninterim
prior once an agent knows its own model.

5LetF t be theσ-algebra generated overHt, on whichµk(·|b0

k)
is defined. Thenµk(·|b0

k) over the infinite observation paths is
defined over the minimalσ-algebra (Borel algebra) containing all
F ts.

the other agent. Since an agent has no way of knowing the
true model of its opponent from beforehand, it must assign
a non-zero probability to each candidate model of the other
agent. We emphasize that the grain of truth assumption on
the agents’ prior beliefs is a stronger assumption than ACC.
In other words, as we show later, it is possible to satisfy the
ACC while violating the grain of truth assumption.

Subjective Equilibrium
Truth compatible beliefs of an agent that performs Bayesian
learning tend to converge in the limit to the opponent
model(s) that most likely generates the observations of the
agent. In the context of the I-POMDP framework, an agent’s
belief over the other’s models updated using the process out-
lined in Eqs. 1 and 2, will converge in the limit. Formally,

Proposition 1 (Bayesian Learning in I-POMDPs). For an
agent in the I-POMDP framework, if its initial belief over
the other’s models satisfies the ACC, its posterior beliefs will
converge with probability 1.

Proof. As we proved before, Bayesian learning is a Mar-
tingale. SetΘ = Mj , and φ = Oi. Noting that the
I-POMDP belief update is Bayesian, its Martingale prop-
erty follows from applying the proof appropriately. In or-
der to apply Theorem 1 to the I-POMDP belief update, set
Xt = Pri(mj |h

t
i) whereht

i is agenti’s observation history
up to timet. Let bt

i denotePri(mj |h
t
i) andb̂k

i be a possible
belief of agenti aboutj’s models, at timet. We must first
show thatE[X2

t ] is bounded.

E[|bt
i|

2] =
∑(|Ai||Ωi|)

t

k=1 |bt
i = b̂k

i |
2Pr(̂bk

i )

=
∑(|Ai||Ωi|)

t

k=1

∑
Mj

b̂k
i (mj)

2Pr(̂bk
i ) (L2 norm)

≤
∑(|Ai||Ωi|)

t

k=1 1 · Pr(̂bk
i )

= 1

Proposition 1 now follows from a straightforward applica-
tion of Theorem 1.

The above result does not imply that an agent’s belief al-
ways converges to the true model of the other agent. This
is due to the possible presence ofobservationally equivalent
models of the other agent. For example, for agenti, all mod-
els of j that induce identical distributions over all possible
future observation paths are said to be observationally equiv-
alent. When a particular observation history obtains, agenti
is unable to distinguish between the observationally equiva-
lent models ofj. In other words, observationally equivalent
models generate distinct behaviors for histories which are
never observed. Models that are observationally equivalent
to the true model are also the reason why it is possible for
prior beliefs to violate the grain of truth assumption, and yet
satisfy ACC.

Example:For an example of observationally equivalent
models, consider a version of the multiagent tiger game in
which the tiger persists behind its original door once any
door has been opened. Additionally,i has superior obser-
vation capabilities compared toj, and each agent is able
to perfectly observe other’s actions but observes the growls
imperfectly. Leti’s utility dictate that it will not open any



doors until it’s 100% certain that the tiger is behind the
opposite door. The corresponding strategy fori is to lis-
ten for an infinite number of time steps. Suppose that as
a best response to its belief,j were to adopt a strategy in
which it would listen for an infinite number of steps, but
if at any timei opened a door, it would also do so at the
next time step and then continue opening the same door.
The true distribution assigns a probability 1 to the histo-
ries{[〈GL|GR,S〉, 〈GL|GR,S〉]}∞1 . Instead of the above
mentioned strategy ifj were to adopt a follow-the-leader
strategy, i.e.j performs the action whichi did in the previ-
ous time step, then the true distribution would again assign
probability 1 to the previously mentioned histories. The two
different strategies ofj turn out to be observationally equiv-
alent fori.

An immediate consequence of the convergence of
Bayesian learning is that the predictive distribution overthe
future observation paths induced by an agent’s belief aftera
finite sequence of observationsht

k, projHt+1
µk(·|b0

k, ht
k),

k=i,j becomes arbitrary close to the true distribution,
projHt+1

µ0(·|h
t), for a finitet, and converges uniformly in

the limit. This result is important because it establishes that
no matter what the initial beliefs of the agents about the fu-
ture are, provided that these beliefs are truth compatible,the
agents’ opinions (about the future) will merge and correctly
predict the true future in the limit. This result was first noted
in (Blackwell & Dubins 1962); we present it below and refer
the reader to the paper for its proof.

Lemma 1 (Blackwell and Dubins (1962)). Suppose thatP
is a predictive probability on X, andQ is absolutely con-
tinuous w.r.t. P . Then for each conditional distribution
P t(x1, . . . , xt) of the future given the past w.r.t.P , there
exists a conditional distributionQt(x1, . . . , xt) of the fu-
ture given the past w.r.t.Q such that,||P t(x1, . . . , xt) −
Qt(x1, . . . , xt)|| →

t→∞
0 with Q-probability 1.

We use Lemma 1 to establish predictive convergence in
the context of the I-POMDP framework.

Proposition 2 (ǫ-Predictive Convergence in I-POMDPs).
For all agents in the I-POMDP framework, if their initial
beliefs satisfy the ACC, then for everyǫ > 0, there exists a
finiteT which is a function ofǫ, such that for allt ≥ T and
with µ0-probability 1,

||projHt+1
µ0(·|h

t)−projHt+1
µk(·|b0

k, ht
k)|| ≤ ǫ for k = i, j

Proof. Referring to Lemma 1, letX = H. We observe
that projH µ0 and projH µk(·|b0

k) for k = i, j are pre-
dictive as defined in (Blackwell & Dubins 1962). Set
Q = projH µ0, andP = projH µk(·|b0

k). Subsequently,
Qt = projHt+1

µ0(·|h
t), andP t = projHt+1

µk(·|b0
k, ht

k).
Proposition 2 then follows immediately from a straightfor-
ward application of Lemma 1.

We have shown that for a POSG modeled using the I-
POMDP formalism, the players’ beliefs over opponent’s
models converge in the limit if they satisfy the ACC prop-
erty. However, the limit beliefs may be incorrect, due to

the inability of agents to distinguish between observation-
ally equivalent models of the opponent on the basis of the
observation history. Nevertheless, their beliefs over thefu-
ture paths come arbitrary close, and remain close, to the true
distribution over the future, after a finite amount of time.
Further observations will only confirm their beliefs about
the truth, and will not alter their beliefs. We capture this no-
tion using the concept of a subjective equilibrium (Kalai &
Lehrer 1993a), defined as follows:
Definition 3 (Subjectiveǫ-Equilibrium). Let bt

k, k = i, j
be the agents’ beliefs at some timet. A pair of policy trees,
π∗ = [π∗

i , π∗
j ] is in subjectiveǫ-equilibrium if,

1. π∗
i ∈ OPT (bt

i), π
∗
j ∈ OPT (bt

j)

2. ||projHt+1
µ0(·|h

t) − projHt+1
µk(·|b0

k, ht
k)|| ≤ ǫ, k =

i, j with aµ0-probability 1.

For ǫ = 0, subjective equilibrium obtains. Condition 1 of
subjectiveǫ-equilibrium states that agents are subjectively
rational, i.e. their strategies are best responses to theirbe-
liefs. As we mentioned before, these strategies are the pol-
icy trees computed using Eqs. 3 and 4. The second condi-
tion states that the agents’ beliefs have attainedǫ-predictive
convergence. In other words, a strategy profile is in subjec-
tive ǫ-equilibrium when the strategies are best responses to
agents’ beliefs that have attainedǫ-predictive convergence.

We now establish a key result of this paper, which is that
behavior strategies of agents playing a POSG modeled using
the I-POMDP framework, attain subjectiveǫ-equilibrium in
finite time and subjective equilibrium in the limit, provided
that their initial beliefs satisfy the ACC.
Proposition 3 (Convergence to Subjective Equilibrium in
I-POMDPs). Let π = [πi, πj ] be the strategies of agents
i and j respectively, playing a POSG modeled using the I-
POMDP formalism. Letb0

i andb0
j be their initial beliefs. If

the following conditions are met,
1. πi ∈ OPT (b0

i ), πj ∈ OPT (b0
j )

2. projH µ0 ≪ projH µk(·|b0
k), k = i, j (ACC)

then for anyǫ > 0, and for allµ0-positive probability histo-
ries, there exists some finite time stepT which is a func-
tion of ǫ, such that for allt ≥ T , the strategy profile,
π∗ = [π∗

i , π∗
j ] is in subjectiveǫ-equilibrium where,

• bt
i andbt

j are the agents’ beliefs at timet

• π∗
i ∈ OPT (bt

i), π
∗
j ∈ OPT (bt

j)

Proof. Proposition 3 follows in part from Proposition 2, and
in part from noting that agents in the I-POMDP framework
compute strategies that are best responses to their posterior
beliefs at each time step, and that the beliefs are updated
using their observation history.

Strategy profiles in subjectiveǫ-equilibrium for arbitrarily
small ǫ ≥ 0 are stable. Specifically, further play will bring
agents’ beliefs over the future closer to the truth statistically,
and the corresponding strategy profiles will remain in the
subjectiveǫ-equilibrium. Note that ACC is a sufficient con-
dition, but not a necessary one. An example setting in which
even though ACC is violated, yet subjectiveǫ-equilibrium
still results is given in (Kalai & Lehrer 1993a).



Limitations
Recall that in order to guarantee subjective equilibrium, the
agents’ prior beliefs must satisfy the ACC condition. We
now investigate how to satisfy this condition. As we men-
tioned previously, since an agent has no way of knowing the
true model of the other a’priori, it must assign some proba-
bility to all possible models of the other agent. As a result,
agents’ beliefs will exhibit a grain of truth. However, under
the assumption of computability of the agents’ strategies,we
observe that it is impossible for all the agents’ beliefs to si-
multaneously satisfy the grain of truth. In order to show this,
we borrow a result from (Nachbar & Zame 1996).

Lemma 2 (Nachbar and Zame (1996)). There exists a sub-
game perfect equilibrium strategy profile, [π1, π2], for
which π2 is computable, and no exact best response toπ2

is computable.

Proposition 4 (Impossibility Result). Within the I-POMDP
framework, agents’ prior beliefs that assign a non-zero
probability to all possible models of the other, cannot simul-
taneously satisfy the grain of truth assumption.

Proof. We first note that within the I-POMDP framework,
the model spaces,Mi andMj , are restricted to the set of
computable models. Letb0

i be agenti’s initial belief that
assigns a non-zero probability to all models inMj . Lemma 2
implies that the support ofb0

i must contain a strategy ofj for
which no computable best response exists. This implies that
OPT (b0

i ) – i’s best response strategy to its belief – is not
computable, since in computing OPT, we must enumerate
all possible models ofj. Therefore,j’s belief that has a full
support inMi, fails to account for the true strategy ofi.

Consequences of this negative result point toward a sub-
tle tension between learning (to predict the true distribution
over the observation histories) and optimization. Indeed,as
Binmore indicates in (1982), this conflict is at the heart of
why perfect rationality is an unattainable ideal. Binmore
proves that a Turing machine cannot always predict truth-
fully the behavior of an opponent Turing machine (given its
complete description) and optimize simultaneously. Similar
questions about the plausibility of realizing the subjective
equilibrium in repeated games have also been raised, for ex-
ample see (Nachbar 1997). We emphasize that Proposition 4
applies only toexactbest responses. One may always find
a computableǫ-optimal response by optimizing over a long
enough finite horizon.

While Proposition 4 does not question the existence of
equilibrium, it bears relevance to whether the equilibrium
can be realized. The implication of Proposition 4 is that
it is difficult to satisfy the truth compatibility conditionin
practice, and therefore ensure convergence to equilibrium.
Consequently, our results cast a negative shadow on using
equilibrium as a solution concept for POSGs formalized by
the I-POMDP framework.

Discussion
In this paper we theoretically analyzed the play of agents en-
gaged in a POSG formalized using the interactive POMDP

framework. In particular, we have considered subjectively
rational agents which may not know others’ strategies.
Therefore, they maintain beliefs over the physical state and
models of other agents and optimize with respect to their be-
liefs. Within this framework, we first proved that if agents’
beliefs satisfy a truth compatibility condition, then strategies
of agents that learn and optimize converge to the subjective
equilibrium in the limit, and subjectiveǫ-equilibrium for ar-
bitrarily small ǫ > 0 in finite time. This result is a gen-
eralization of a similar result in repeated games, to POSGs
as formalized by the I-POMDP framework. Secondly, we
argued about the implausibility of satisfying the truth com-
patibility condition and therefore reaching the equilibrium in
practice. Our results therefore bear relevance to the notion
of using equilibrium for solving POSGs. As part of future
work, we are investigating the relation between subjective
and Nash equilibrium. Since a link between the two has al-
ready been established for repeated games, its existence for
POSGs can be speculated.
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