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ABSTRACT
Interactive dynamic influence diagrams (I-DIDs) are graphical mod-
els for sequential decision making in uncertain settings shared by
other agents. Algorithms for solving I-DIDs face the challenge of
an exponentially growing space of candidate models ascribed to
other agents, over time. We formalize the concept of aminimal
model set, which facilitates qualitative comparisons between dif-
ferent approximation techniques. We then present a new approx-
imation technique that minimizes the space of candidate models
by discriminating between model updates. We empirically demon-
strate that our approach improves significantly in performance on
the previous clustering based approximation technique.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Theory, Performance

Keywords
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1. INTRODUCTION
Interactive dynamic influence diagrams (I-DIDs) [1] are graphi-

cal models for sequential decision making in uncertain multiagent
settings. I-DIDs concisely represent the problem of how an agent
should act in an uncertain environment shared with others who may
act in possibly similar ways. I-DIDs may be viewed as graphical
counterparts of interactive POMDPs (I-POMDPs) [3], providing a
way to model and exploit the embedded structure often present in
real-world decision-making situations. They generalize DIDs [11],
which are graphical representations of POMDPs, to multiagent set-
tings in the same way that I-POMDPs generalize POMDPs.

As we may expect, I-DIDs acutely suffer from both the curses
of dimensionality and history [5]. This is because the state space
in I-DIDs includes the models of other agents in addition to the
traditional physical states. These models encompass the agents’
beliefs, action and sensory capabilities, and preferences, and may
themselves be formalized as I-DIDs. The nesting is terminated at
the0th level where the other agents are modeled using DIDs. As
the agents act, observe, and update beliefs, I-DIDs must track the
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evolution of the models over time. Consequently, I-DIDs not only
suffer from the curse of history that afflicts the modeling agent,
but more so from that exhibited by the modeled agents. The ex-
ponential growth in the number of models over time also further
contributes to the dimensionality of the state space. This is compli-
cated by the nested nature of the space.

Previous approach for approximating I-DIDs [1] focuses on re-
ducing the dimensionality of the state space by limiting and hold-
ing constant the number of models of the other agents. Using the
insight that beliefs that are spatially close are likely to be behav-
iorally equivalent [7], the approach clusters the models of the other
agents and selects representative models from each cluster. Intu-
itively, a cluster contains models that are likely to be behaviorally
equivalent and hence may be replaced by a subset of representative
models without a significant loss in the optimality of the decision
maker. However, this approach first generates all possible models
before reducing the space at each time step, and utilizes an iterative
and often time-consumingk-means clustering method.

In this paper, we begin by formalizing aminimal setof models
of others, a concept previously discussed in [6]. Then, we presenta
new approach for approximating I-DIDs that significantly reduces
the space of possible models of other agents that we need consider
by discriminating between model updates. Specifically, at each
time step, we select only those models for updating which will
result in predictive behaviors that are distinct from others in the
updated model space. In other words, models that on update would
result in predictions which are identical to those of existing models
are not selected for updating. For these models, we simply transfer
their revised probability masses to the existing behaviorally equiv-
alent models. Intuitively, this approach improves on the previous
one because it does not generate all possible models prior to selec-
tion at each time step; rather it results in minimal sets of models.

In order to avoid updating all models, we find the regions of
the belief space so that models whose beliefs fall in these regions
will be behaviorally equivalent on update. Note that these regions
need not be in spatial proximity. Because obtaining the exact re-
gions is computationally intensive, we approximately obtain these
regions by solving a subset of the models and utilizing their com-
bined policies. We theoretically analyze the error introduced by
this approach in the optimality of the solution. More importantly,
we experimentally evaluate our approach on I-DIDs formulated for
two problem domains and show approximately an order of mag-
nitude improvement in performance in comparison to the previous
clustering approach.

2. BACKGROUND: INTERACTIVE DID
We briefly describe interactive influence diagrams (I-IDs) for

two-agent interactions followed by their extensions to dynamic set-



tings, I-DIDs, and refer the reader to [1] for more details.

2.1 Syntax
In addition to the usual chance, decision, and utility nodes, I-IDs

include a new type of node called themodel node(hexagonal node,
Mj,l−1, in Fig. 1(a)). We note that the probability distribution
over the chance node,S, and the model node together represents
agenti’s belief over itsinteractive state space. In addition to the
model node, I-IDs differ from IDs by having a chance node,Aj ,
that represents the distribution over the other agent’s actions, and a
dashed link, called apolicy link.
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Figure 1: (a) A generic levell > 0 I-ID for agent i situated with
one other agentj. The hexagon is the model node (Mj,l−1) and
the dashed arrow is the policy link.(b) Representing the model
node and policy link using chance nodes and dependencies be-
tween them.

The model node contains as its values the alternative computa-
tional models ascribed byi to the other agent. We denote the set
of these models byMj,l−1. A model in the model node may itself
be an I-ID or ID, and the recursion terminates when a model is an
ID or a simple probability distribution over the actions. Formally,
we denote a model ofj as,mj,l−1 = 〈bj,l−1, θ̂j〉, wherebj,l−1 is
the levell − 1 belief, andθ̂j is the agent’sframeencompassing the
action, observation, and utility nodes. We observe that the model
node and the dashed policy link that connects it to the chance node,
Aj , could be represented as shown in Fig. 1(b). The decision node
of each levell − 1 I-ID is transformed into a chance node. Specif-
ically, if OPT is the set of optimal actions obtained by solving
the I-ID (or ID), thenPr(aj ∈ A1

j ) = 1

|OPT |
if aj ∈ OPT , 0

otherwise. The conditional probability table (CPT) of the chance
node,Aj , is amultiplexer, that assumes the distribution of each of
the action nodes (A1

j , A
2
j ) depending on the value ofMod[Mj ].

In other words, whenMod[Mj ] has the valuem1
j,l−1, the chance

nodeAj assumes the distribution of the nodeA1
j , andAj assumes

the distribution ofA2
j whenMod[Mj ] has the valuem2

j,l−1. The
distribution overMod[Mj ], is i’s belief overj’s models given the
state. For more than two agents, we add a model node and a chance
node representing the distribution over an agent’s action linked to-
gether using a policy link, for each other agent.

I-DIDs extend I-IDs to allow sequential decision making over
several time steps (see Fig. 2). In addition to the model nodes and
the dashed policy link, what differentiates an I-DID from a DID is
themodel update linkshown as a dotted arrow in Fig. 2. We briefly
explain the semantics of the model update next.

The update of the model node over time involves two steps: First,
given the models at timet, we identify the updated set of models
that reside in the model node at timet + 1. Because the agents act
and receive observations, their models are updated to reflect their
changed beliefs. Since the set of optimal actions for a model could
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Figure 2: A generic two time-slice levell I-DID for agent i.
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Figure 3: The semantics of the model update link. Notice the
growth in the number of models att + 1 shown in bold.

include all the actions, and the agent may receive any one of|Ωj |
possible observations, the updated set at time stept + 1 will have
up to |Mt

j,l−1||Aj ||Ωj | models. Here,|Mt
j,l−1| is the number of

models at time stept, |Aj | and|Ωj | are the largest spaces of actions
and observations respectively, among all the models. The CPT
of Mod[M t+1

j,l−1
] encodes the function,τ(bt

j,l−1, a
t
j , o

t+1

j , bt+1

j,l−1
)

which is 1 if the beliefbt
j,l−1 in the modelmt

j,l−1 using the action
at

j and observationot+1

j updates tobt+1

j,l−1
in a modelmt+1

j,l−1
; oth-

erwise it is 0. Second, we compute the new distribution over the
updated models, given the original distribution and the probability
of the agent performing the action and receiving the observation
that led to the updated model. The dotted model update link in the
I-DID may be implemented using standard dependency links and
chance nodes, as shown in Fig. 3 transforming it into a flat DID.

2.2 Solution
The solution of an I-DID (and I-ID) proceeds in a bottom-up

manner, and is implemented recursively as shown in Fig. 4. We
start by solving the level 0 models, which may be traditional DIDs.
Their solutions provide probability distributions which are entered
in the corresponding action nodes found in the model node of the
level 1 I-DID. The solution method uses the standard look-ahead
technique, projecting the agent’s action and observation sequences
forward from the current belief state, and finding the possible be-
liefs thati could have in the next time step. Because agenti has a
belief overj’s models as well, the look-ahead includes finding out
the possible models thatj could have in the future. Consequently,
each ofj’s level 0 models represented using a standard DID in the
first time step must be solved to obtain its optimal set of actions.
These actions are combined with the set of possible observations
thatj could make in that model, resulting in an updated set of can-
didate models (that include the updated beliefs) that could describe
the behavior ofj. SE(bt

j , aj , oj) is an abbreviation for the be-
lief update. Beliefs over these updated set of candidate models are
calculated using the standard inference methods through the de-



pendency links between the model nodes (Fig. 3). The algorithm in
Fig. 4 may be realized using the standard implementations of DIDs.

I-DID E XACT (level l ≥ 1 I-DID or level 0 DID, T )
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

PopulateMt+1

j,l−1

3. For eachmt
j inMt

j,l−1
do

4. Recursively call algorithm with thel− 1 I-DID (or DID)
that representsmt

j and the horizon,T − t

5. Map the decision node of the solved I-DID (or DID),
OPT (mt

j), to the chance nodeAt
j

6. For eachaj in OPT (mt
j) do

7. For eachoj in Oj (part ofmt
j ) do

8. Updatej’s belief,bt+1

j ← SE(bt
j , aj , oj)

9. mt+1

j ← New I-DID (or DID) with bt+1

j as init. belief

10. Mt+1

j,l−1

∪
← {mt+1

j }

11. Add the model node,Mt+1

j,l−1
, and the model update link

betweenMt
j,l−1

andMt+1

j,l−1

12. Add the chance, decision, and utility nodes fort + 1 time slice
and the dependency links between them

13. Establish the CPTs for each chance node and utility node

Solution Phase
14. If l ≥ 1 then
15. Represent the model nodes and the model update link as in Fig. 3

to obtain the DID
16. Apply the standard look-ahead and backup method to solve the

expanded DID (other solution approaches may also be used)

Figure 4: Algorithm for exactly solving a level l ≥ 1 I-DID or
level 0 DID expanded overT time steps.

3. DISCRIMINATIVE MODEL UPDATES
As we mentioned, the number of candidate models of the other

agent in the model node grows exponentially over time. This expo-
nential growth leads to a disproportionate increase in the size of the
state space and the number of models that need to be solved. We
begin by introducing a set of models that isminimaland describe
a method for generating this set. A minimal set is analogous to the
idea of minimal mental model space in [6]. For simplicity, we as-
sume that models of the other agent differ only in their beliefs and
that the other agent’s frame is known.

3.1 Minimal Model Sets
Although the space of possible models is very large, not all mod-

els need to be considered in the model node. Models that are
behaviorally equivalent[6, 7] – whose behavioral predictions for
the other agent are identical – could be pruned and a single rep-
resentative model considered. This is because the solution of the
subject agent’s I-DID is affected by the predicted behavior of the
other agent only; thus we need not distinguish between behav-
iorally equivalent models.

Given the set of models of the other agent,j, in a model node,
Mj,l−1, we define a correspondingminimalset of models:

DEFINITION 1 (MINIMAL SET ). Define a minimal set of mod-
els,M̂j,l−1, as the largest subset ofMj,l−1, such that for each
model,mj,l−1 ∈ M̂j,l−1, there exists no other model,m′

j,l−1 ∈

M̂j,l−1/mj,l−1 for whichOPT (mj,l−1) = OPT (m′
j,l−1), where

OPT (·) denotes the solution of the model that forms the argument.

We say thatM̂j,l−1 minimizesMj,l−1. As we illustrate in Fig. 5
using the well-known tiger problem [3], the set̂Mj,l−1 that mini-

mizesMj,l−1 comprises of all the behaviorallydistinctrepresenta-
tives of the models inMj,l−1 and only these models. Because any
model from a group of behaviorally equivalent models may be se-
lected as the representative in̂Mj,l−1, a minimal set corresponding
toMj,l−1 is not unique, although its cardinality remains fixed.
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Figure 5: Illustration of a minimal set using the tiger prob-
lem. Black vertical lines denote the beliefs contained in dif-
ferent models of agentj included in model node,Mj,0. Deci-
mals on top indicatei’s probability distribution over j’s models.
In order to form a minimal set, M̂j,0, we select a representa-
tive model from each behaviorally equivalent group of models
(models in differently shaded regions). Agenti’s distribution
over the models inM̂j,0 is obtained by summing the probabil-
ity mass assigned to the individual models in each region. Note
that M̂j,0 is not unique because any model within a shaded re-
gion could be selected for inclusion in it.

Agenti’s probability distribution over the minimal set,̂Mj,l−1,
conditioned on the physical state is obtained by summing the prob-
ability mass over behaviorally equivalent models inMj,l−1 and
assigning the accumulated probability to the representative model
in M̂j,l−1. Formally, letm̂j,l−1 ∈ M̂j,l−1, then:

b̂i(m̂j,l−1|s) =
∑

mj,l−1∈Mj,l−1

bi(mj,l−1|s) (1)

whereMj,l−1 ⊆ Mj,l−1 is the set of behaviorally equivalent mod-
els to which the representativêmj,l−1 belongs. Thus, ifM̂j,l−1

minimizesMj,l−1, then Eq. 1 shows how we may obtain the prob-
ability distribution overM̂j,l−1 at some time step, giveni’s belief
distribution over models in the model node at that step (see Fig. 5).

The minimal set together with the probability distribution over
it has an important property: Solution of an I-DID remains un-
changed when the models in a model node and the distribution over
the models are replaced by the corresponding minimal set and the
distribution over it, respectively. In other words, transforming the
set of models in the model node into its minimal set preserves the
solution. Proposition 1 states this formally:

PROPOSITION 1. Let X : ∆(Mj,l−1) → ∆(M̂j,l−1) be a
mapping defined by Eq. 1, whereMj,l−1 is the space of models in a
model node andM̂j,l−1 minimizes it. Then, applyingX preserves
the solution.

The proof of Proposition 1 is given in Appendix A. Proposition 1
allows us to show thatM̂j,l−1 is indeed minimal givenMj,l−1

with respect to the solution of the I-DID.

COROLLARY 1. M̂j,l−1 in conjunction withX is a sufficient
solution-preserving subset of models found inMj,l−1.

Proof of this corollary follows directly from Proposition 1. Notice
that the subset continues to be solution preserving when we addi-
tionally augmentM̂j,l−1 with models fromMj,l−1.

As the number of models in the minimal set is, of course, no
more than in the original set and typically much less, solution of the
I-DID is often computationally less intensive with minimal sets.



3.2 Discriminating Using Policy Graph
A straightforward way of obtainingM̂j,l−1 exactlyat any time

step is to first ascertain the behaviorally equivalent groups of mod-
els. This requires us to solve the I-DIDs or DIDs representing
the models, select a representative model from each behaviorally
equivalent group to include in̂Mj,l−1, and prune all others which
have the same solution as the representative.

In order to avoid solving models, Doshi et al. [1] use the insight
that models whose beliefs are spatially close are likely to be be-
haviorally equivalent. Ak-means clustering approach is utilized,
which clusters models based on their belief proximity and selects a
pre-defined number of models from each cluster while pruning the
models on the fringes of each cluster. This approach is not guaran-
teed to generatêMj,l−1 exactly – several behaviorally equivalent
models often remain in the reduced model space. Further, the full
set of models must be generated in subsequent time steps before
clustering. This leaves room for further improvement.

3.2.1 Approach
Given the set ofj’s models,Mj,l−1, at timet(=0), we present a

technique for generating the minimal sets at subsequent time steps
in the I-DID. We first observe that behaviorally distinct models at
time t may result in updated models att + 1 that are behaviorally
equivalent. Hence, our approach is to select at time stept only
those models for updating which will result in predictive behaviors
that are distinct from others in the updated model space att + 1.
Models that will result in predictions on update which are identi-
cal to those of other existing models att + 1 are not selected for
updating. Consequently, the resulting model set att+1 is minimal.
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Figure 6: (a) Example policy trees obtained by solving three
models ofj for the tiger problem setting. We may merge the
three L nodes and OL nodes respectively to obtain the graph in
(b). Because the three policy trees of two steps rooted at L are
identical, we may merge them to obtain the policy graph in(c).
Nodes att = 0 are annotated with ranges ofPrj(TL).

We do this by solving the individual I-DIDs or DIDs inMt
j,l−1.

Solutions to DIDs or I-DIDs are policy trees, which may be merged
bottom up to obtain apolicy graph, as we demonstrate in Fig. 6.
The following proposition gives the complexity of merging the pol-
icy trees to obtain the policy graph.

PROPOSITION2 (COMPLEXITY OF TREE MERGE). The worst-
case complexity of the procedure for merging policy trees to form a
policy graph isO((|Ωj |

T−1)|M̂j |), whereT is the horizon.

PROOF. Complexity of the policy tree merge procedure is pro-
portional to the number of comparisons that are made between parts

of policy trees to ascertain their similarity. As the procedure fol-
lows a bottom-up approach, the maximum number of comparisons
are made between leaf nodes and the worst case occurs when none
of the leaf nodes of the different policy trees can be merged. Note
that this precludes the merger of upper parts of the policy trees as
well. Each policy tree may contain up to|Ωj |

T−1 leaf nodes, where
T is the horizon. The case when none of the leaf nodes merge must
occur when the models are behaviorally distinct – they form a min-
imal set,M̂j . Hence, at mostO((|Ωj |

T−1)|M̂j |) comparisons are
made.

Each node in the policy graph represents an action to be per-
formed by the agent and edges represent the agent’s observations.
As is common with policy graphs in POMDPs, we associate with
each node at timet = 0, a range of beliefs for which the corre-
sponding action is optimal (see Fig. 6(c)). This range may be ob-
tained by computing the value of executing the policy tree rooted
at each node att = 0 and starting from each physical state. This
results in a vector of values for each policy tree, typically called
the α-vector. Intersecting theα-vectors and projecting the inter-
sections on the belief simplex provides us with the boundaries of
the needed belief ranges.

We utilize the policy graph to discriminate between model up-
dates. For clarity, we formally define a policy graph next.

DEFINITION 2 (POLICY GRAPH). Define a policy graph as:

PG = 〈V, E ,Lv,Le〉

whereV is the set of vertices (nodes);E is the set of ordered pairs
of vertices (edges);Lv : V → A assigns to each vertex an action
from the set of actions,A (node label); andLe : E → Ω assigns
to each edge an observation from the set of observations,Ω (edge
label). Le observes the property that no two edges whose first el-
ements are identical (begin at the same vertex) are assigned the
same observation.

Notice that a policy graph augments a regular graph with meaning-
ful node and edge labels. For a policy graph,PG, we also define
the transition function,Tp : V × Ω → V. Tp(v, o) returns the
vertex,v′, such that{v, v′} ∈ E andLe({v, v′}) = o.

Our simple insight is thatTp(v, o) is the root node of a policy
tree that represents the predictive behavior for the model updated
using the actionLv(v) and observationo. As we iterate overj’s
models in the model node at timet in the expansion phase while
solving the I-DID, we utilizeTp in deciding whether to update a
model,mj,l−1 ∈ Mt

j,l−1. We first combine the policy trees ob-
tained by solving the models in nodeM t

j,l−1 to obtain the policy
graph,PG, as shown in Fig. 6. Letv be the vertex inPG whose
action label,Lv(v), represents the rational action formj,l−1. We
can ascertain this by simply checking whether the belief inmj,l−1

falls within the belief range associated with the node. For every
observationo ∈ Le({v, ·}), we update the model,mj,l−1, using
actionLv(v) and observationo, if v′ = Tp(v, o) has not been gen-
erated previously for this or any other model. We illustrate below:

EXAMPLE 1 (MODEL UPDATE). Consider the level 0 models
of j in the model node at timet, Mt

j,0 = {〈0.01, θ̂j〉, 〈0.5, θ̂j〉,

〈0.05, θ̂j〉}, for the multiagent tiger problem. Recall that in a model
of j, such as〈0.01, θ̂j〉, 0.01 isj’s belief andθ̂j is its frame. From
the PG in Fig. 6(c), the leftmost node prescribing the actionL is
optimal for the first and third models, while the rightmost node
also prescribingL is optimal for the second model. Beginning
with model,〈0.01, θ̂j〉, Tp(v, GL) = v1 (whereLv(v1) = L) and
Tp(v, GR) = v2 (Lv(v2) = OL). Since this is the first model we



consider, it will be updated usingL and both observations result-
ing in two models inMt+1

j,0 . For the model,〈0.5, θ̂j〉, if v′ is the
optimal node (Lv(v′) = L), Tp(v′, GR) = v1, which has been en-
countered previously. Hence, the model will not be updated using
L andGR, although it will be updated usingL, GL.

Intuitively, for a model,mj,l−1, if nodev′ = Tp(v, o) has been
obtained previously for this or some other model and action-observation
combination, then the update ofmj,l−1 will be behaviorally equiv-
alent to the previously updated model (both will have policy trees
rooted atv′). Hence,mj,l−1 need not be updated using the ob-
servationo. Because we do not permit updates that will lead to
behaviorally equivalent models, the set of models obtained att + 1
is minimal. Applying this process analogously to models in the fol-
lowing time steps will lead to minimal sets at all subsequent steps
and nesting levels.

3.2.2 Approximation
We may gain further efficiency by avoiding the solution of all

models in the model node at the initial time step. A simple way
of doing this is to randomly selectK models ofj, such thatK ≪
|M0

j,l−1|. Solution of the models will result inK policy trees,
which could be combined as shown in Fig. 6 to form a policy graph.
This policy graph is utilized to discriminate between the model up-
dates. Notice that the approach becomes exact if the optimal so-
lution of each model inM0

j,l−1 is identical to that of one of the
K models. Because theK models are selected randomly, this as-
sumption is implausible and the approach is likely to result in a
substantial loss of optimality.

We propose a simple refinement that mitigates the loss. Recall
that models whose beliefs are spatially close are likely to be be-
haviorally equivalent [7]. Each of the remaining|M0

j,l−1| − K
models whose belief is not withinǫ ≥ 0 of the belief of any of the
K models will also be solved. This additional step makes it more
likely that all the behaviorally distinct solutions will be generated
and included in forming the policy graph. Ifǫ = 0, all models in
the model node will be solved, while increasingǫ reduces the num-
ber of solved models beyondK. One measure of distance between
belief points is the Euclidean distance, though other metrics such
as the L1 may also be used.

3.3 Transfer of Probability Mass
Notice that a consequence of not updating models using some

action-observation combination is that the probability mass that
would have been assigned to the updated model in the model node
at t + 1 is lost. Disregarding this probability mass may introduce
error in the optimality of the solution.

We did not perform the update because a model that is behav-
iorally equivalent to the updated model already exists in the model
node at timet + 1. We could avoid the error by transferring the
probability mass that would have been assigned to the updated
model on to the behaviorally equivalent model.

As we mentioned previously, the nodeMod[M t+1

j,l−1
] in the model

nodeM t+1

j,l−1
, has as its values the different models ascribed to

agentj at time t + 1. The CPT ofMod[M t+1

j,l−1
] implements

the functionτ(bt
j,l−1, a

t
j , o

t+1

j , bt+1

j,l−1
), which is 1 if bt

j,l−1 in the

modelmt
j,l−1 updates tobt+1

j,l−1
in modelmt+1

j,l−1
using the action-

observation combination, otherwise it is 0. Letmt+1
′

j,l−1
= 〈bt+1

′

j,l−1
, θ̂j〉

be the model that is behaviorally equivalent tomt+1

j,l−1
. In order to

transfer the probability mass to this model if the update is pruned,
we modify the CPT ofMod[M t+1

j,l−1
] to indicate thatmt+1

′

j,l−1
is the

model that results from updatingbt
j,l−1 with action,at

j and obser-

vationot+1

j . This has the desired effect of transferring the proba-
bility that would have been assigned to the updated model (Fig. 3)
on tomt+1

′

j,l−1
in the model node at timet + 1.

4. ALGORITHM
We present the algorithm for solving a levell ≥ 1 I-DID approx-

imately (as well as a level 0 DID) in Fig. 7. The algorithm differs
from the exact approach (Fig. 4) in the presence of an initial ap-
proximation step and in the expansion phase. In addition to a two
time-slice levell I-DID and horizonT , the algorithm takes as in-
put the number of random models to be solved initially,K, and the
distance,ǫ. Following Section 3.2, we begin by randomly selecting
K models to solve (lines 2-5). For each of the remaining models,
we identify one of theK solved model whose belief is spatially
the closest (ties broken randomly). If the proximity is withinǫ,
the model is not solved – instead, the previously computed solution
is assigned to the corresponding action node of the model in the
model node,M0

j,l−1 (lines 6-12). Subsequently, all models in the
model node are associated with their respective solutions (policy
trees), which are merged to obtain the policy graph (line 13).

In order to populate the model node of the next time step, we
identify the nodev in PG that represents the optimal action for a
model at timet. The model is updated using the optimal actionaj

(= Lv(v)) and each observationoj only if the node,v′ = Tp(v, oj)
has not been encountered in previous updates (lines 16-22). Given
a policy graph, evaluatingTp(v, oj) is a constant time operation.
Otherwise, as mentioned in Section 3.3, we modify the CPT of
node,Mod[M t+1

j,l−1
], to transfer the probability mass to the behav-

iorally equivalent model (line 24). Consequently, model nodes at
subsequent time steps in the expanded I-DID are likely populated
with minimal sets. Given the expanded I-DID, its solution may
proceed analogously to the exact approach.

5. COMPUTATIONAL SAVINGS
AND ERROR BOUND

The primary complexity of solving I-DIDs is due to the large
number of models that must be solved overT time steps. At some
time stept, there could be|M0

j |(|Aj ||Ωj |)
t many models of the

other agentj, where|M0
j | is the number of models considered ini-

tially. The nested modeling further contributes to the complexity
since solutions of each model at levell − 1 requires solving the
lower levell − 2 models, and so on recursively up to level 0. In an
N+1 agent setting, if the number of models considered at each level
for an agent is bound by|M|, then solving an I-DID at levell re-
quires the solutions ofO((N |M|)l) many models. Discriminating
between model updates reduces the number of agent models at each
level to at most the size of the minimal set,|M̂t|, while solving at
leastK models initially and incurring the worst-case complexity
of O((|Ω|T−1)|M̂|) in forming the policy graph (Proposition 2).
Consequently, we need to solve at mostO((N |M̂∗|)l) number of
models at each non-initial time step, wherêM∗ is the largest of
the minimal sets, in comparison toO((N |M|)l). HereM grows
exponentially over time. In general,|M̂| ≪ |M|, resulting in a
substantial reduction in the computation. Additionally, a reduction
in the number of models in the model node also reduces the size
of the interactive state space, which makes solving the upper-level
I-DID more efficient.

If we choose to solve all models in the initial model node,M0
j,l−1,

in order to form the policy graph, all subsequent sets of models will
indeed be minimal. Consequently, there is no loss in the optimality
of the solution of agenti’s level l I-DID.



I-DID A PPROX(level l ≥ 1 I-DID or level 0 DID, T , K, ǫ)
1. If l ≥ 1 then

Selectively solveM0
j,l−1

2. Randomly selectK models fromM0
j,l−1

3. For eachmk
j in theK modelsdo

4. Recursively call algorithm with thel − 1 I-DID (or DID)
that representsmk

j , the horizonT , andK, ǫ

5. Map the decision node of the solved I-DID (or DID),
OPT (mk

j ), to the chance nodeAk
j

6. For eachmk̄
j in the|M0

j,l−1
| −K modelsdo

7. Find model amongK whose belief,bk
j , is closest tobk̄

j in mk̄
j

8. If ||bk
j − bk̄

j ||1 ≤ ǫ then

9. Map the decision node,OPT (mk
j ), to the chance node,Ak̄

j

10. else
11. Recursively call algorithm with thel− 1 I-DID (or DID)

that representsmk̄
j , the horizonT , K, andǫ

12. Map the decision node of the solved I-DID (or DID),
OPT (mk̄

j ), to the chance nodeAk̄
j

13. Merge the solutions (policy trees) of all models bottom up
to obtain the policy graph,PG

Expansion Phase
14. For t from 0 to T − 1 do
15. If l ≥ 1 then

PopulateMt+1

j,l−1
minimally

16. For eachmt
j inMt

j,l−1
do

17. For eachaj in OPT (mt
j) do

18. For eachoj in Ωj (part ofmt
j ) do

19. If Tp(v, oj) not been encountered previouslythen
20. Updatej’s belief,bt+1

j ← SE(bt
j , aj , oj)

21. mt+1

j ← New I-DID (or DID) with bt+1

j as belief

22. Mt+1

j,l−1

∪
← {mt+1

j }

23. else
24. Update CPT ofMod[Mt+1

j,l−1
] s. t. rowmt

j , aj , oj

has a 1 in column of behaviorally equivalent model
25. Add the model node,Mt+1

j,l−1
, and the model update link

betweenMt
j,l−1

andMt+1

j,l−1

26. Add the chance, decision, and utility nodes fort + 1 time slice
and the dependency links between them

27. Establish the CPTs for each chance node and utility node

Thesolution phaseproceeds analogously as in Fig. 4

Figure 7: Algorithm for approximately solving a l ≥ 1 I-DID
expanded overT steps using discriminative model updates.

For the case where we selectK < |M0
j,l−1| models to solve,

if ǫ is infinitesimally small, we will eventually solve all models
resulting in no error. With increasing values ofǫ, larger numbers of
models remain unsolved and could be erroneously associated with
existing solutions. In the worst case, some of these models may be
behaviorally distinct from all of theK solved models. Therefore,
the policy graph is a subgraph of the one in the exact case, and leads
to sets of models that are subsets of the minimal sets. Additionally,
lower level models are solved approximately as well. Letmj,l−1

be the model associated with a solved model,m′
j,l−1, resulting in

the worst error. Letα be the exact policy tree obtained by solving
mj,l−1 optimally andα′ be the policy tree form′

j,l−1 obtained
in Fig. 7. Asm′

j,l−1 is itself solved approximately, letα′′ be the
exact policy tree that is optimal form′

j,l−1. If bj,l−1 is the belief in
mj,l−1 andb′j,l−1 in m′

j,l−1, then the error is:

E = |α · bj,l−1 − α′ · bj,l−1|
= |α · bj,l−1 − α′ · bj,l−1 + (α′′ · bj,l−1 − α′′ · bj,l−1)|
≤ |(α · bj,l−1 − α′′ · bj,l−1)|+ |(α

′′ · bj,l−1 − α′ · bj,l−1)|
(2)

For the first term,|α · bj,l−1 −α′′ · bj,l−1|, which we denote byρ,
the error is only due to associatingmj,l−1 with m′

j,l−1 – both are
solved exactly. We analyze this error below:

ρ = |α · bj,l−1 − α′′ · bj,l−1|
= |α · bj,l−1 − α′′ · b′

j,l−1
+ α′′ · b′

j,l−1
− α′′ · bj,l−1|

≤ |α · bj,l−1 − α · b′
j,l−1

+ α′′ · b′
j,l−1

− α′′ · bj,l−1| (α
′′ · b′

j,l−1

≥ α · b′
j,l−1

)

= |α · (bj,l−1 − b′
j,l−1

)− α′′ · (bj,l−1 − b′
j,l−1

)|

= |(α− α′′) · (bj,l−1 − b′
j,l−1

)

≤ ||α− α′′||∞ × ||bj,l−1 − b′
j,l−1

||1 (Hölder’s inequality)
≤ (Rmax

j −Rmin
j )T × ǫ

(3)
In subsequent time steps, because the sets of models could be sub-
sets of the minimal sets, the updated probabilities could be trans-
ferred to incorrect models. In the worst case, the error incurred is
bounded analogously to Eq. 3. Hence, the cumulative error inj’s
behavior overT steps isT × ρ, which is similar to that in [1]:

ρT ≤ (Rmax
j − Rmin

j )T 2ǫ

The second term,|(α′′ · bj,l−1 − α′ · bj,l−1)|, in Eq. 2 represents
the error due to the approximate solutions of models further down
in level. Sincej’s behavior depends, in part, on the actions of the
other (and not the value of its solution), even a slight deviation by
j from the exact prediction could lead toj’s behavior that is worst
in value. Hence, it seems difficult to derive bounds for the second
term that are tighter than the usual,(Rmax

j − Rmin
j )T .

In summary, for anyK, error in j’s predicted behavior due to
mapping models withinǫ is bounded, but we are unable to usefully
bound the error due to approximately solving lower level models.

6. EXPERIMENTAL RESULTS
We implemented the algorithm in Fig. 7 (utilizingHugin Ex-

pert) and demonstrate the empirical performance of discriminative
model updates (DMU) on level 1 I-DIDs for two well-studied prob-
lem domains: the multiagent tiger [3] (this formulation is different
from the one in [8] having more observations) and a multiagent ver-
sion of the machine maintenance problem [9]. We also compare the
performance with an implementation of model clustering (MC) [1],
previously proposed to approximate I-DIDs. In particular, we show
that the quality of the policies generated by discriminating between
model updates while solving I-DIDs approaches that of the exact
policy asK (which we now refer to asKDMU to distinguish it
from theKMC in MC) is increased andǫ decreased. As there are
infinitely many computable models, we obtain the exact policy by
exactlysolving the I-DID given an initial finite set ofM0 models
of the other agent. In addition, we show that DMU performs signif-
icantly (sometimes an order of magnitude) better than MC by com-
paring the time taken in achieving a level of expected reward. As
we illustrate, this could be attributed to the low numbers of models
retained by DMU, which approaches|M̂t

j,0|.
In Figs. 8(a, b), we show the average rewards gathered by ex-

ecuting the policy trees obtained from approximately solving the
level 1 I-DIDs for the multiagent tiger problem. Each data point
is the average of 50 runs of executing the policies, where the true
model of the other agent,j, is randomly picked according toi’s be-
lief distribution overj’s models. Each plot is for a particularM0,
whereM0 denotes thetotal number of candidate models ascribed
to j initially. For a givenKDMU , the policies improve and con-
verge toward the exact as we reduce distance,ǫ. IncreasingKDMU

lifts the average rewards. Notice that DMU significantly improves
on the average reward of MC as we reduceǫ, for KDMU = KMC .
This behavior remains true for the multiagent machine maintenance



Multiagent tiger problem

 1

 2

 3

 4

 5

 6

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
ew

ar
d

ε

KDMU=50
KDMU=100

KMC=50
KMC=100
KMC=200

M0=200 Exact
 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
ew

ar
d

ε

KDMU=25
KDMU=50

KMC=25
KMC=50

KMC=100
 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 R
ew

ar
d

Time(s)

DMU
MC

(a) (b) (c)

Figure 8: Performance profiles for the multiagent tiger problem generated by executing policies obtained using DMU on an I-DID of
(a) horizon T=4; M0=200, and(b) T=8; M0=100. AsKDMU increases andǫ reduces, the performance approaches that of the exact
for given M0. We compare with MC for varying KMC as well. Vertical bars represent the standard deviations.(c) Notice that an
I-DID solved using DMU requires approximately an order of magnitude less time as the MC to produce comparable solutions.
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Figure 9: Performance profiles for multiagent MM problem. (a) T=4; M0=100. AsKDMU increases andǫ decreases, the perfor-
mance approaches that of the exact for givenM0. (b) I-DID solved using DMU generates comparable average rewards in time that
is approximately an order of magnitude less than used by MC.(c) Number of models generated by DMU in model node for different
horizons in aT=10 I-DID for the multiagent tiger problem ( M0 = 200). Asǫ reduces, the model space approaches the minimal set.

problem as well (see Fig. 9(a)). Importantly, DMU results in solu-
tions comparable to those using MC but, for many cases, in an order
of magnitude less time (Figs. 8(c) and 9(b)). The time consumed
is a function ofKDMU , ǫ and the horizon, which are varied.

Utilizing DMU while solving I-DIDs exhibits improved efficiency
because it maintains few models in the model node at each time
step. As we show in Fig. 9(c), the number of models in a model
node is very close to the minimal model set for low values ofǫ. This
is in contrast to MC, which, although less thanM0, still keeps a rel-
atively high number of models to obtain comparable solution qual-
ity. Many of these models are behaviorally equivalent and could
have been pruned out. We obtain slightly less models than the min-
imal set for lowǫ because the lower level DIDs are also solved
approximately. The minimal sets were computed using a linear
program analogous to the one in [1] for finding sensitivity points.

Level 1 T Time (s)
DMU MC

Tiger 6 2.53 19.86
10 92.33 *
17 488.12 *

MM 4 0.578 29.77
10 95.31 *
15 823.42 *

Table 1: DMU scales significantly better than MC to larger horizons.
All experiments are run on a WinXP platform with a dual processor
Xeon 2.0GHz with 2GB memory.

Finally, as we show in Table 1 we were able to solve I-DIDs over
more than 15 horizons using DMU (M0=25), improving signifi-
cantly over the previous approach which could comparably solve
only up to 6 horizons.

7. RELATED WORK
Suryadi and Gmytrasiewicz [10] in an early piece of related work,

proposed modeling other agents using IDs. The approach proposed
ways to modify the IDs to better reflect the observed behavior.
However, unlike I-DIDs, other agents did not model the original
agent and the distribution over the models was not updated based
on the actions and observations.

I-DIDs contribute to a growing line of work that includes multia-
gent influence diagrams (MAIDs) [4], and more recently, networks
of influence diagrams (NIDs) [2]. These formalisms seek to ex-
plicitly and transparently model the structure that is often present
in real-world problems by decomposing the situation into chance
and decision variables, and the dependencies between the variables.
MAIDs objectively analyze the game, efficiently computing the
Nash equilibrium profile by exploiting the independence structure.
NIDs extend MAIDs to include agents’ uncertainty over the game
being played and over models of the other agents.

Both MAIDs and NIDs provide an analysis of the game from
an external viewpoint, and adopt Nash equilibrium as the solution
concept. However, equilibrium is not unique – there could be many
joint solutions in equilibrium with no clear way to choose between



them – and incomplete – the solution does not prescribe a policy
when the policy followed by the other agent is not part of the equi-
librium. Specifically, MAIDs do not allow us to define a distribu-
tion over non-equilibrium behaviors of other agents. Furthermore,
their applicability is limited to static single play games. Interac-
tions are more complex when they are extended over time, where
predictions about others’ future actions must be made using models
that change as the agents act and observe. I-DIDs seek to address
this gap by offering an intuitive way to extend sequential decision
making as formalized by DIDs to multiagent settings. They allow
the explicit representation of other agents’ models as the values of a
specialmodel node. Other agents’ models and the original agent’s
beliefs over these models are then updated over time.

As we mentioned, a dominating cause of the complexity of I-
DIDs is the exponential growth in the candidate models over time.
Using the insight that models whose beliefs are spatially close are
likely to be behaviorally equivalent, Doshi et al. [1] utilized ak-
means approach to cluster models together and selectK models
closest to the means in the model node at each time step. While
this approach requires all models to be expanded before clustering
is applied, in this paper we preemptively avoid expanding models
that will turn out to be behaviorally equivalent to others.

Minimal sets of models were previously discussed by Pynadath
and Marsella in [6], which used the concept of behavioral equiva-
lence, introduced earlier in [7], to form the space. In addition to a
formal treatment, we contextualize minimal sets within the frame-
work of I-DIDs and utilize them to compare across approximations.

8. DISCUSSION
I-DIDs provide a general and graphical formalism for sequen-

tial decision making in the presence of other agents. The increased
complexity of I-DIDs is predominantly due to the exponential growth
in the number of candidate models of others, over time. These mod-
els may themselves be represented as I-DIDs or DIDs. Many of
these models may be behaviorally equivalent or may become equiv-
alent on update. We introduced the concept of a minimal model set
that may be used to qualitatively compare between approximation
techniques that reduce the space of models. One such approach is to
discriminatively update models only if the resulting models are not
behaviorally equivalent to previously updated ones. We showed an
efficient way to gauge whether a model should be updated. The em-
pirical performance demonstrates the computational savings pro-
vided by this approach and its significant improvement over the
previous approximation technique. Although we focused on level
1 I-DIDs, we expect similar results as we evaluate for deeper levels
of strategic nesting of the models.
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APPENDIX

A. PROOF OF PROPOSITION 1

PROOF. We prove by induction on the horizon. Let {M
1
j,l−1,

. . ., M
q

j,l−1
} be the collection of behaviorally equivalent sets of

models inMj,l−1. We aim to show that the value of each ofi’s ac-
tions in the decision nodes at each time step remains unchanged
on application of the transformation,X. This implies that the
solution of the I-DID is preserved. LetQn(bi,l, ai) give the ac-
tion value at horizonn. It’s computation in the I-DID could be
modeled using the standard dynamic programming approach. Let
ERi(s, mj,l−1, ai) be the expected immediate reward for agenti
averaged overj’s predicted actions. Then,∀m

q
j,l−1

∈M
q
j,l−1

ERi(s, m
q

j,l−1
, ai) =

∑
aj

Ri(s, ai, aj) Pr(aj |m
q

j,l−1
) =

Ri(s, ai, a
q
j), becauseaq

j is optimal for allmq

j,l−1
∈ M

q

j,l−1
.

Basis step:Q1(bi,l, ai) =
∑

s,mj,l−1
bi,l(s, mj,l−1)ERi(s, mj,l−1,

ai) =
∑

s,q
bi,l(s)

∑
m

q
j,l−1

∈M
q
j,l−1

bi,l(m
q

j,l−1
|s)Ri(s, ai, a

q
j)

(aq
j is optimal for all behaviorally equivalent models inM

q
j,l−1

)
=

∑
s,q

bi,l(s)Ri(s, ai, a
q
j)

∑
m

q
j,l−1

∈M
q
j,l−1

bi,l(m
q

j,l−1
|s)

=
∑

s,q
bi,l(s)Ri(s, ai, a

q
j)b̂i,l(m̂

q

j,l−1
|s) (from Eq. 1)

=
∑

s,q
b̂i,l(s, m̂

q

j,l−1
)ERi(s, m̂

q

j,l−1
, ai) (aq

j is optimal form̂q
j,l−1

)

= Q̂1
i (b̂i,l, ai)

Inductive hypothesis: Let, ∀ai,bi,l
Qn(bi,l, ai) = Q̂n(b̂i,l, ai),

wherêbi,l relates tobi,l using Eq. 1. Therefore,Un(bi,l) = Ûn(b̂i,l)
whereUn(bi,l) is the expected utility ofbi,l for horizonn.
Inductive proof: Qn+1(bi,l, ai) = Q̂1(b̂i,l, ai) +

∑
oi,s,mj,l−1,aj

Pr(oi|s, ai, aj)Pr(aj |mj,l−1)bi,l(s, mj,l−1)U
n(b′i,l) (basis step)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) bi,l(s)

∑
m

q
j,l−1

∈M
q
j,l−1

bi,l(m
q

j,l−1
|s) Un(b′i,l) (aq

j is optimal for model inMq
j,l−1

)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) bi,l(s)

∑
m

q
j,l−1

∈M
q
j,l−1

bi,l(m
q

j,l−1
|s) Ûn(b̂′i,l) (using the inductive hypothesis)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) bi,l(s) b̂i,l(m̂

q

j,l−1
|s)

Ûn(b̂′i,l) (from Eq. 1)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) b̂i,l(s, m̂

q

j,l−1
) Ûn(b̂′i,l)

= Q̂n+1(b̂i,l, ai)


