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ABSTRACT
Recursive reasoning of the formwhat do I think that you think that
I think (and so on) arises often while acting rationally in multiagent
settings. Previous investigations indicate that humans do not tend
to ascribe recursive thinking to others. Several multiagent decision-
making frameworks such as RMM, I-POMDP and the theory of
mind model recursive reasoning as integral to an agent’s rational
choice. Real-world application settings for multiagent decision
making tend to bemixedinvolving humans and human-controlled
agents. We investigate recursive reasoning exhibited by humans
during strategic decision making. In a large experiment involv-
ing 162 participants, we studied the level of recursive reasoning
generally displayed by humans while playing a sequential fixed-
sum, two-player game. Our results show that subjects experiencing
a strategic game made more competitive with fixed-sum payoffs
and tangible incentives predominantly attributed first-level recur-
sive thinking to opponents. They acted using second level of rea-
soning exceeding levels of reasoning observed previously.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Theory, Performance

Keywords
decision making, recursive reasoning, human behavior

1. INTRODUCTION
Strategic recursive reasoning of the formwhat do I think that you

think that I think(and so on) arises naturally in multiagent settings.
For example, a robotic uninhabited aerial vehicle (UAV)’s decision
may differ if it believes that its reconnaissance target believes that
it is not being spied upon in comparison to when the UAV believes
that its target believes that it is under surveillance. Specifically,
an agent’s rational action in a two-agent game often depends on
the action of the other agent, which, if the other is also rational,
depends on the action of the subject agent.

Assumptions ofcommon knowledge[11, 10] of elements of the
game tend to preclude the emergence of recursive reasoning. How-
ever, not all elements can be made common knowledge. For exam-
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ple, an agent’s belief is private especially in a non-cooperative set-
ting. Multiple decision-making frameworks such as the recursive
modeling method (RMM) [17, 18] and interactive partially observ-
able Markov decision process (I-POMDP) [16, 8] model recursive
beliefs as an integral aspect of agents’ decision making in multia-
gent settings.

Real-world applications of decision making often involve mixed
settings that are populated by humans and human-controlled agents.
Examples of such applications include UAV reconnaissance in an
urban operating theater and online negotiations involving humans.
The optimality of an agent’s decisions as prescribed by frameworks
such as RMM and I-POMDP in these settings depends on how ac-
curately the agent models the strategic reasoning of others. A key
aspect of this modeling is the depth of the recursive reasoning that
is displayed by human agents.

Initial investigations into ascertaining the depth of strategic rea-
soning of humans by Stahl and Wilson [25] and more recently, by
Hedden and Zhang [21] and Ficici and Pfeffer [12] show that hu-
mans generally operate at only first or second level of recursive
reasoning. Typically the first level, which attributes no recursive
reasoning to others, is more prominent. Evidence of these shal-
low levels of reasoning is not surprising, as humans are limited by
bounded rationality.

Increasing evidence in cognitive psychology [14, 15, 19] sug-
gests that tasks which are ecologically more valid and which in-
corporate tangible incentives induce decisions in humans that are
closer to being rational. Both these aspects were lacking in the ex-
periments conducted by Hedden and Zhang [21]. We hypothesize
that a strategic setting that is realistic, competitive and includes tan-
gible incentives would increase participants’ tendency to attribute
levels of reasoning to others that reflect individuals’ actual level of
reasoning.

In this paper, we report on a large study that we conducted with
human subjects to test our hypothesis. We constructed a task that
resembled the two-player sequential game as used by Hedden and
Zhang but made more competitive by incorporating fixed-sum out-
comes and monetary incentives. Subjects played the game against
a computer opponent, although they were led to believe that the
opponent was human. Different groups of subjects were paired
against an opponent that used no recursive reasoning (zero level)
and opposite one that used first-level reasoning. We also manipu-
lated the realism of the task between participants, with one group
experiencing the task described abstractly while the other experi-
enced a task that was structurally identical but described using a
realistic cover story involving UAV reconnaissance.

Data collected on the decisions of the participants indicate that
(i) subjects acted accurately significantly more times when the op-
ponent displayed first-level reasoning than when the opponent was



at zero level. The particpants also learned the reasoning level of
opponents more quickly than reported previously by Hedden and
Zhang. (ii) No significant difference in the accuracy of the deci-
sions was noticed between abstract and realistic task settings. Thus,
our study reveals clear evidence that higher levels of recursive rea-
soning could be observed in humans under simpler and more com-
petitive settings with tangible incentives. However, there is room
for future research on whether increased realism contributes to deeper
levels of strategic reasoning.

2. RELATED WORK
Harsanyi [20] recognized that indefinite recursive thinking arises

naturally among rational players, which leads to difficulty in mod-
eling it computationally. In order to, in part, avoid dealing with
recursive reasoning, Harsanyi proposed the notion of agent types
and common knowledge of the joint belief over the player types.
However, as shown in [11, 10], common knowledge is itself mod-
eled using an indefinite recursive system.

Since Harsanyi’s introduction of abstract agent types, researchers
have sought to mathematically define the type system. Beginning
with Mertens and Zamir [24], who showed that a type could be de-
fined as a hierarchical belief system with strong assumptions on the
underlying probability space, subsequent work [5, 22] has gradu-
ally relaxed the assumptions required on the state space while si-
multaneously preserving the desired properties of the hierarchical
belief systems. Along a similar vein, Aumann defined recursive
beliefs using both a formal grammar [1] and probabilities [2] in an
effort to formalize interactive epistemology.

Within the context of behavioral game theory [6], Stahl and Wil-
son [25] investigated the level of recursive thinking exhibited by
humans. Stahl and Wilson found that only 2 out of 48 (4%) of their
subjects attributed recursive reasoning to their opponents while play-
ing 12 symmetric 3×3 matrix games. On the other hand, 34%
of the subjects ascribed zero-level reasoning to others. Remain-
ing subjects utilized either Nash equilibrium based or dominant
strategies. Corroborating this evidence, Hedden and Zhang [21] in
a study involving 70 subjects, found that subjects predominantly
began with first-level reasoning. When pitted against first-level
co-players, some began to gradually use second-level reasoning,
although the percentage of such players remained generally low.
Hedden and Zhang utilized a sequential, two-player, general-sum
game, sometimes also called the Centipede game in the literature [4].
Ficici and Pfeffer [12] investigated whether human subjects dis-
played sophisticated strategic reasoning while playing 3-player, one-
shot negotiation games. Although their subjects reasoned about
others while negotiating, there was insufficient evidence to distin-
guish whether their level two models better fit the observed data
than level one models.

Evidence of recursive reasoning in humans and investigations
into the level of such reasoning is relevant to multiagent decision
making inmixedsettings. In particular, these results are directly ap-
plicable to computational frameworks such as RMM [17], I-POMDP [16]
and cognitive ones such as theory of mind [9] that ascribe inten-
tional models of behavior to other agents.

3. EXPERIMENTAL STUDY: HIGHER LEVEL
RECURSIVE REASONING

In a large study involving human subjects we investigate whether
subjects would generally exhibit a higher level of recursive reason-
ing under particular settings that are more typical of realistic appli-
cations.

We begin with a description of the problem setup followed by the
participating population and our methodology for the experiment.

3.1 Problem Setting
In keeping with the tradition of experimental game research [7,

6] and the games used by Hedden and Zhang [21], we selected a
two-player alternating-move game of complete and perfect infor-
mation. In this sequential game, whose game tree is depicted in
Fig. 1(a), playerI (the leader) may elect tomoveor stay. If player
I elects to move, playerII (the follower) faces the choice of mov-
ing or staying, as well. An action of stay by any player terminates
the game. Note that actions of all players are perfectly observable
to each other. While the game may be extended to any number of
moves, we terminate the game after two moves of playerI.

Moves Moves Moves

Stays Stays Stays

I III

A B C

D A

B

D

C

(a) (b)

I decides

I decides

II decides

Figure 1: (a) A game tree representation (extensive form) of
our two-player game. Because of its particular structure, such
games are also sometimes called Centipede games. States of the
game are indicated by the letters, A, B, C and D.(b) Arrows
denote the progression of play in the game. An action ofmove
by each player causes a transition of the state of the game.

In order to decide whether to move or stay at stateA, a rational
playerI must reason about whether playerII will choose to move or
stay atB. A rational playerII ’s choice in turn depends on whether
playerI will move or stay atC. The default action is to stay. Thus,
the game lends itself naturally to recursive reasoning and the level
of reasoning is governed by the height of the game tree. Player
I’s rational choice may be computed using backward induction in a
straightforward way.

Recent studies have reported that more normative reasoning is
facilitated in humans by using multimodal, spatial, ecologically
valid (realistic) and experience-based presentations of the underly-
ing game structure. Such facilitation has been reported in multiple
psychological phenomena such as base-rate neglect [19, 15], over-
confidence [14], the confirmation bias [13], and the conjunction
fallacy [14]. In all these cases, the implementation of more real-
istic settings with richer contexts has made reasoning significantly
closer to rational. Therefore, we imposed the followingcover story
in order to instantiate the game of Fig. 1:

Player I (you) wants to gather critical information about a tar-
get. Player II (a UAV) wants to prevent you from gathering that
information. In order to gather the information, you can use your
best spy-grade binoculars, and you can move closer to the target.
You are currently at position J in Fig. 2(a), where you are close
enough to have a 60% chance of getting the information you need.
If you move to position K, you will still have a 60% chance of get-
ting the information. If you move to position L, you increase your
chances to 100%. You cannot move directly from position J to po-
sition L, and you cannot move backwards (L to K, K to J, or L to
J). Player II has equipment to jam your signal, which completely
destroys any information you have obtained, if it is deployed suc-
cessfully. Player II is currently at position X, and it can move to
position Y, but it cannot move backwards (Y to X). If you stay at
position J, you will not arouse Player II’s suspicion, she will not
attempt to jam your signal, and she will not move from position X.



If you move to K, then Player II must choose whether to stay at X
or move to Y. If Player II stays at X, she has a 33.3% chance of
jamming your signal, but if she moves to Y, she has a 66.7% chance
of jamming your signal. However, if she chooses to move to Y, you
can quickly move from K to L while she is moving. If you are at L
and she is at Y, she has a 20% chance of jamming your signal. If
you move from K to L while Player II is still at X, she has a 100%
chance of jamming your signal, so you should not do that.

Moves Moves Moves

Stays Stays Stays

I III
0.8

0.20.40.6move

move

move

0.6

0.2
1.0

0.33
0.667

0.6

X Y

L K

J

II

I

target
1.0

(a) (b)

Figure 2: (a) A spatial visualization of the game where player
I is a human intending to gather information about a target.
Player II is a human-controlled UAV aiming to hinder I from
gathering the critical information. The dashed arrows and
probabilities indicate the chances ofI gathering information
or II hindering its access.(b) Centipede representation of our
game with the outcomes as the probabilities of success of player
I. It is a fixed-sum game and the remaining probability is the
chance of success of playerII (failure of player I).

This scenario is accompanied with Fig. 2 for illustration. If par-
ticipants have difficulty in understanding the scenario, they will be
further provided with a chart shown in Table 1 in which the poste-
rior probabilities of success are clearly given. In order to succeed,
player I must both obtain the information and not have the sig-
nal jammed. So the overall probability of success is: Pr(obtaining
info)×[1-Pr(jamming signal)].

Notice from Fig. 2 that a rational playerI will choose to stay.
This is because ifI chooses to move, playerII will choose to stay
with an overall chance of 0.6 of hindering access. A move by player
II is not rational because playerI will then choose to move as well
with the probability of success forII being only 0.2.

Player I’s Player II’s I’s chance of II’s chance of I’s overall chance

position position obtaining info jamming signal of success

J X 60% 0% (doesn’t try) 60%

J Y wouldn’t happen – II doesn’t move if I doesn’t go from J to K

K X 60% 33.3% 40%

K Y 60% 66.7% 20%

L X 100% 100% 0% (so don’t try it!)

L Y 100% 20% 80%

Table 1: Chart showing the various probabilities for players I
and II .

3.2 Participants
A total of 162 subjects participated in the study. The partici-

pants were undergraduate students enrolled in lower-level Psychol-
ogy courses at the University of Georgia. In addition to receiving
performance-contingent monetary incentives, which we describe
below, the participants received partial course credit.

All participants gave informed consent for their participation prior
to admission into the study. They were appropriately debriefed at

the conclusion of the study.

3.3 Methodology

3.3.1 Opponent Models
In order to test different levels of recursive reasoning, we de-

signed the computer opponent (playerII ) to play a game in two
ways: (i) If player I chooses to move,II decides on its action by
simply choosing between the outcomes at statesB and stay, andC
with a default of stay in Fig. 1(b) rationally. Therefore,II is a zero-
level player and we call itmyopic(see Fig. 3(a)). (ii) If player I
chooses to move, the opponent decides on its action by reasoning
what playerI will do rationally. Based on the action ofI, playerII
will select an action that maximizes its outcomes. Thus, playerII
is a first-level player, and we call itpredictive(see Fig. 3(b)).

C        D

C        D

move

stay B         [C : D]

B         [C : D]

move

stay

move

stay

A         [B : [C : D]]

I

predictive II

I

A         [B : [C : D]]

Second-level reasoning

(a)

(b)

move

stay B         C

B         C 

move

stay

A         [B : C]

I

myopic II 

A         [B : C]

First-level reasoning

Figure 3: (a) A myopic player II decides on its action by com-
paring the payoff at state B with that at C. Here, B ≺ C de-
notes a preference of C over B for the player whose turn it is to
play and B : C denotes the rational choice by the appropriate
player between actions leading to states B and C. Thus, player
I exhibits first-level reasoning. (b) If player II is predictive, it
reasons aboutI’s actions. Player I then exhibits second-level
reasoning in deciding its action at state A.

To illustrate, in the game of Fig. 2 if playerI decides to move,
a myopic playerII will move to obtain a probability of success of
0.8, while a predictiveII will choose to stay because it thinks that
playerI will choose to move fromC to D, if it moved. By choosing
to stay,II will obtain an outcome of 0.6 in comparison to 0.2 if it
moves.

3.3.2 Payoff Structure
Notice that the rational choice of players in the game of Fig. 1

depends on the preferential ordering of states of the game rather
than actual values. Leta ≺ b indicate that the player whose turn
it is to play prefers stateb overa, and because the game is purely
competitive, the other player prefers statea overb. Games that ex-
hibit a preference ordering ofD ≺ C ≺ B ≺ A andA ≺ B ≺ C
≺ D for playerI are trivial because playerI will always opt to stay
in the former case and move in the latter case, regardless of how
II plays. Furthermore, consider the orderingC ≺ A ≺ B ≺ D for
playerI. A myopic opponent will choose to move while a predic-
tive opponent will stay. However, in both these cases playerI will
choose to move. Thus, games whose states display a preferential
ordering of the type mentioned previously are not diagnostic – re-
gardless of whether playerI thinks that opponent is myopic or is
predictive,I will select the same action precluding a diagnosis of



I’s level of recursive reasoning. Of all the 24 distinct preferential
orderings among states that are possible, only one is diagnostic:C
≺ B ≺ A ≺ D. For this ordering, playerI will move if it thinks
that the opponent is myopic, otherwiseI will stay if the opponent
is thought to be predictive. We point out that the game in Fig. 2
follows this preference ordering.

3.3.3 Design of Task
Batches of participants played the game on computer terminals

with each batch having an even number of players. Each batch was
divided into two groups and members of the two groups were sent
to different rooms. This was done to create the illusion that each
subject was playing against another, although the opponent was in
reality a computer program. This deception was revealed to the
subjects during debriefing.

Each subject experienced an initialtraining phaseof at least 15
games that were trivial or those in which a myopic or predictive
opponent behaved identically. These games served to acquaint the
participants with the rules and goal of the task without unduly bi-
asing them about the behavior of the opponent. Therefore, these
games have no effect on the initial model of the opponent that par-
ticipants may have. Participants who failed to choose the rational
actions in any of the previous 5 games after the 15-game training
phase continued with new training games until they met the crite-
rion of no rationality errors in the 5 most recent games. Those who
failed to meet this criterion after 40 total training games did not
advance to the test phase, and were removed from the study.

In thetest phase, each subject experienced 40 games instantiated
with outcome probabilities that exhibited the diagnostic preferen-
tial ordering ofC ≺ B ≺ A ≺ D for playerI. The 40 critical games
were divided into 4 blocks of 10 games each. In order to avoid sub-
jects developing a mental set, we interspersed these games with 40
that exhibited the orderings,C ≺ A ≺ B ≺ D andD ≺ B ≺ A ≺ C.
The latter games not only serve to distract the participants but also
function as “catch” trials allowing us to identify participants who
may not be attending to the games.

Approximately half the participants played against myopic op-
ponents while the remaining played against predictive ones. In each
category, approximately half of the participants were presented with
just the Centipede representation of the games with probabilistic
payoffs and no cover story, which we label as theabstractver-
sion. Remaining participants in the category were presented with
the UAV cover story and the associated picture in Fig. 2, including
the Centipede representation. We label this as therealisticversion.
About half of all participants also experienced a screen asking them
what they thought the opponent would play and their confidence in
the prediction, for some of the games.

Participants received a monetary incentive of 50 cents for every
correct action that they chose in a game. This resulted in an average
payout of approximately $30 per participant.

3.4 Results and Discussion
Our study spanned a period ofthree monthsfrom September

through November 2008. We report the results of this study be-
low.

3.4.1 Training Phase
As mentioned before, each of the 162 human subjects initially

played a series of 15 games in order to get acquainted with the
fixed-sum and complete information structure, and objectives of the
task at hand. After this initial phase, participants who continued to
exhibit errors in any of the games up to 40 total games were elim-
inated. 26 participants did not progress further in the study. These

participants either failed to understand how the game is played or
exhibited excessive irrational behavior, which would have affected
the validity of the results of this study.

3.4.2 Test Phase
Of the 136 participants (70 female) who completed the test phase,

we show the numbers that experienced myopic or predictive oppo-
nents and abstract or realistic versions of the games, in Table 2.

Structure myopic myopic predictive predictive
abstract realistic abstract realistic

No. of subjects 37 30 37 32

Table 2: The numbers of participants that experienced each of
the 4 different types of tasks. The numbers differ from each
other because of eliminations in the training phase.

Participants in each of the 4 groups were presented with 40 in-
stances of the particular game type whose payoff structure is diag-
nostic. For the sake of analysis, we assembled 4test blockseach
comprising 10 games. For each participant, we measured the frac-
tion of times that the subject played accurately in each test block.
We define anaccurate choiceas the action choice which is rational
given the type of opponent. For example, in the game of Fig. 2, the
accurate choice for playerI, if the opponent is myopic, is to move.
On the other hand, if the opponent is predictive, the accurate choice
for I is to stay.

Because opponents types are fixed and participants experience
40 games, they have the opportunity to learn how their opponent
might be playing the games. Consequently, participants may grad-
ually make more accurate choices over time. Participants were
deemed to have learnt the opponent’s model at the game beyond
which performance was always statistically significantly better than
chance, as measured by a binomial test at the 0.05 level and one-
tailed. This implies making no more than one inaccurate choice in
any block of 10 games. (For this purpose, blocks were defined by
a moving window of 10 games, not the fixed blocks used in other
analyses.)

In Fig. 4(a), we show the mean proportion of accurate choices
across all participants in each of the 4 groups. Two group-level
findings are evident from the results in Fig. 4(a): First, the mean
proportion of accurate choices is significantly higher when the op-
ponent is predictive as compared to when it is myopic. This is
further evident from Fig. 4(b) where we show the mean propor-
tions marginalizedover the abstract and realistic versions of the
tasks. Student t-tests with p-values< 0.0001 confirm that partici-
pants playing against predictive opponents have statistically signifi-
cant higher proportions of accuracy compared to myopic opponents
across all test blocks.

The higher proportions of accurate choice when the opponent
is predictive in conjunction with the lower proportions when the
opponent is myopic implies that subjects predominantly displayed
second-level reasoning when acting. They expected the opponent
to reason about their subsequent play (first-level reasoning) and
acted accordingly. The fact that myopic opponents did not do this
resulted in their choices being inaccurate.

Second, no significant difference in the mean proportions be-
tween abstract and realistic versions of the tasks is evident across
any test block from Fig. 4(a). This is regardless of whether the op-
ponent is myopic or predictive. This observation is further evident
in Fig. 4(c) which shows the mean proportions for abstract and real-
istic versions marginalized over myopic and predictive opponents.
Student t-tests with very low p-values revealed no statistical signif-
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Figure 4: (a) Mean proportion of accurate choices of the participants for all conditions across test blocks. Notice that subjects
generally expected their opponents to play at first level far more than at zero level. Mean proportions marginalized over(b) abstract
and realistic versions of the task, and(c) over myopic and predictive opponents. The difference in the latter is not statistically
significant.

icance in the difference between the proportions, either overall or
in any test block.

The lack of any significant difference in the accuracy of the choices
seems to suggest that our cover story neither confounded the partic-
ipants nor clarified it further in an intuitive sense. We speculate that
the indifference is due to,(i) the Centipede representation though
abstract being sufficiently clear to facilitate understanding of this
simple game, and thus(ii) subjects playing the games with high
accuracy leaving little room for improvement, at least in the pre-
dictive groups.

Notice from Fig. 4(a) that the mean proportion of accurate choice
improves over successive test blocks in all groups. Many partici-
pants in the predictive groups learnt in fewer than 10 games, by
making no inaccurate choices in the first 7 games, and no more
than one in the first 10 games. Forty-one participants, of which
40 were in the myopic conditions, never achieved learning by our
standard; they were then assigned a value of 40 for the number of
games to learning. The average number of games to learning was
10 for the predictive group and 31.7 for the myopic group (for the
difference, Student t-tests reveal p< 0.0001).
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Figure 5: Count of participants who played myopic or predic-
tive opponents and grouped according to different proportions
of accurate choice.

Finally, in Fig. 5, we detail the number of participants whose
actions across all games fell into different bins of proportion of ac-
curate choice. Fig. 5 reveals that about 83% of the 67 participants
who played against a myopic opponent had proportions less than
0.875. In comparison, only about 4% of the 69 participants who
played a predictive opponent exhibited such proportions of accu-
rate choice. Consequently, these results conclusively reveal that our
subjects predominantly played reasonably and as though they ex-
pected the opponents to be predictive, and thus generally reasoned
at a level higher than had been previously observed.

4. DISCUSSION
Multiple previous investigations into spontaneous recursive rea-

soning by individuals while playing strategic games have shown
that humansgenerallydo not think that opponents will think re-
cursively while playing. Therefore, they themselves reason at only
a single level of nesting. This has been attributed to the bounded
rationality and limited mental processes of humans. Using a strate-
gic game employed in one such previous study but made more
competitive by incorporating fixed-sum payoffs and tangible incen-
tives, we have shown that humans exhibit a higher level of recursive
thinking when playing this game. Thus, we have demonstrated that
in some settings humansgenerallyreason at higher levels of recur-
sion, and therefore exhibit more rational behavior. Consequently,
our experiment opens up avenues for identifying settings where hu-
mans typically exhibit other forms of strategic sophistication such
as simultaneous deeper and longer term thinking.

Although there is psychological evidence to suggest that intuitive
cover stories induce human behavior closer to rational action, our
cover story of UAV reconnaissance neither reduced nor improved
the accuracy of the results. However, we do not claim that the pre-
viously perceived effect is not real, only that our particular cover
story did not evoke it. We suspect that it may make a positive dif-
ference if the game is more sophisticated such as an extended Cen-
tipede game requiring three or four levels of recursive thinking.

An alternate hypothesis for explaining our results could be that
many of the subjects solved the games completely using backward
induction (ie. minimax). However, we do not believe this to be the
case because,(a) participants are implicitly encouraged to think
about opponent models,(b) Hedden and Zhang’s result of predom-
inant first-level reasoning in an identically-structured game pre-
cludes the use of backward induction. Others have noted that back-
ward induction fails to explain a variety of human reasoning and
decision-making behavior [23], and that it is not robust particularly
in gaming situations where parity and certainty do not exist [3].
Our game does not display parity because player I has greater con-
trol over the outcome of the game, and(c) the subjects were not
explicitly trained in sophisticated game-theoretic techniques such
as backward induction or minimax for solving games. Indeed,
our exit questionnaire revealed that participants predominantly rea-
soned about the opponent’s thinking.
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