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Abstract—Many ontology alignment algorithms augment
syntactic matching with the use of WordNet (WN) in order
to improve their performance. The advantage of using WN
in alignment seems apparent. However, we strike a more
cautionary note. We analyze the utility of WN in the context of
the reduction in precision and increase in execution time that
its use entails. For this analysis, we particularly focus on real-
world ontologies. We report distinct trends in the performance
of WN-based alignment in comparison with alignment that
uses syntactic matching only. We analyze the trends and
their implications, and provide useful insights on the types of
ontology pair for which WN-based alignment may potentially
be worthwhile and those types where it may not be.
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I. I NTRODUCTION

Multiple ontologies often exist for overlapping domains.
These need to be aligned in order to promote interoperability
on the semantic Web. Several ontology alignment algorithms
are now available [1], [2], [3], [4], [5] that utilize varying
techniques to semi- or fully automatically generate mappings
between entities in the ontology pair. One popular technique
is the use of large lexical databases such asWordNet
(WN) [6]. This enhances the traditional syntactic or string-
based matching between the labels of entities with the ability
to match words that could be synonyms, hypernyms, and in
other lexical senses. Alignment algorithms utilize WN due
to the potential improvement in recall of the alignment. This
predicted improvement is reinforced by previous studies of
using WN [7], which cite the improved recall to uncondi-
tionally recommend using WN in alignment.

However, we strike a more cautionary note on the util-
ity of WN in ontology alignment. Although its use may
improve recall, one trade off is that precision typically
suffers. This has been studied by Mandala et al. [8] in
the context of information retrieval with the revelation that
WN’s significant negative impact on precision cannot be
ignored while deciding on its use. Additionally, in contrast
to the previous studies [7], [9], we consider the increased
computational expenditure in the form of execution time
as well while evaluating the performance gains. We think
that execution time is a critical component of the evaluation
because automatically aligning ontologies is computationally

intensive, which is exacerbated as the ontologies become
larger.While alignment is often viewed as an offline and one-
time task, continuously evolving ontologies and applications
involving real-time ontology alignment such as semantic
search and Web service composition stress the importance
of computational complexity considerations [10].Conse-
quently, we position the possibly improved performance
gains from using WN in the context of the increased
computational time that the enhanced alignment entails.
We select a recognized ontology alignment algorithm based
on iterative expectation-maximization, which produces the
most likely match between two given ontologies [3]. This
algorithm uses both the structure of the ontologies and
their lexical similarity in arriving at the match. We perform
this experiment comprehensively using ontology pairs that
appear in the real-world ontologies track of the Ontology
Alignment Evaluation Initiative (OAEI) 2009 edition [11].
For our analysis, we think that the real-world ontology pairs
are most appropriate due to the nature of our study.

We uncover some surprising trends while comparing the
performance of ontology alignment enhanced with WN and
that of alignment that uses syntactic matching only. While,
in many cases, the WN-enhanced alignment expectedly
achieved a better recall and F-measure, it did so while taking
significantly more time and aligning without it achieved
nearly identical performance in less time. We also report
on several pairs where the WN-enhanced alignment did
not improve on the performance of the original alignment
algorithm. Consequently, we investigate characteristicsof
the ontology pair that would likely facilitate improved
performance when a lexical database such as WN is used
during the alignment, and particularly those which would
hinder its performance. We think that many of the outcomes
of this analysis are novel and useful in evaluating the use of
computationally intensive add-ons such as WN.

This study has insights for both ontology alignment
researchers and users, and provides useful guidance on
utilizing lexical knowledge sources for ontology alignment.
Its results provide clear evidence against commonly held
beliefs that, (a) the use of WN in ontology alignment
always improves the recall of the alignment; and(b) any
improvement in the recall supersedes the loss in precision



that WN may bring, and this is notwithstanding the excessive
execution time due to using WN. The contributions of this
novel study in the context of alignment are two-fold: First,
it shows that the utility of WN in aligning ontologies is not
always clear, and the use of WN not always advisable. This
is demonstrated by comparing the performance of ontology
alignment with WN and that of alignment without WN.
For example, we show that multiple benchmark ontology
pairs do not exhibit improvements in recall when WN is
used despite the larger execution time. More importantly,
several benchmark ontology pairs do not show a marked
improvement in F-measure when WN is utilized to help the
alignment process. Second, it recommends a set of “rules
of thumb” for ontology alignment users in order to decide
whether WN would be worthwhile for a given ontology
pair. For example, we discover that ontologies with deep
hierarchies take far more time when aligned with WN than
ontologies with shallow hierarchies.

II. BACKGROUND: ONTOLOGY ALIGNMENT

ALGORITHM

Multiple algorithms exist for aligning ontologies, some
of which are tailored to specific domains. For our study, we
select a general-purpose ontology alignment algorithm that
formulates the problem of inferring a match between two
ontologies as a maximum likelihood problem, and solves it
using the technique of expectation-maximization (EM). This
algorithm is available in an ontology alignment tool called
Optima [3]. Our choice of the algorithm is driven by its
competitive performance and the accessibility ofOptima,
which is available as an intuitive API. Many other ontology
alignment tools were either inaccessible or we found no
evidence in their documentation that their use of WN could
be smoothly switched off, which is required in this study.

Optima adopts directed graphs as its model for ontology
schemas and employs a generalized version of EM to arrive
at a map between the nodes of the graphs. This is appropriate
because contemporary ontology description languages such
as RDFS [12] and OWL [13] allow ontology schemas to
be modeled as directed labeled graphs.Optima exploits
the structural, lexical and instance similarity between the
graphs, and differs from the previous approaches in the way
it utilizes them to arrive at, a possibly inexact, match. Inexact
matching is the process of finding a best possible match
between the two graphs when exact matching is not possible
or is computationally difficult.

The iterative alignment algorithm requires a seed map.
This is an initial list of mappings between concepts often
provided to iterative algorithms. While the seed map could
be generated manually,Optima additionally utilizes a simple
technique of mapping leaf nodes (if they exist) across the
ontologies whose labels are syntactically similar. We ensure
that the seed map does not exceed 10% of the nodes in the
smallest ontology. Candidate alignments are generated using

simple but intuitive heuristics. For example, given each pre-
viously mapped node pair, their parents are considered for a
match. Additionally, their sibling nodes could be considered.
Analogous to the seed map, node pairs among the parents
that are sufficiently similar are matched. Different potential
alignments are generated based on how many parent nodes
are matched and whether siblings are matched as well. These
candidate alignments are considered during each iterationof
Optima. More details aboutOptima are available in [3].

III. I NTEGRATING WORDNET

Similarity measures may be broadly categorized into syn-
tactic and semantic. Syntactic similarity between concepts is
entirely based on the string similarity between the concepts’
names, labels and other associated text. Semantic similarity
measures attempt to utilize the meaning behind the concept
names to ascertain the similarity of the concepts. A popular
way of doing this is to exploit lexical databases such as WN,
which provide words related in meaning.

Optima utilizes the well-known Smith-Waterman [14]
technique for ascertaining the syntactic similarity between
concept and relationship names. We enhance the syntac-
tic similarity to include knowledge from WN [6] as a
representative lexical database, popularly used by many
ontology alignment tools. In a comparison of different
ways of using WN to match concept names, Yatskevich
and Giunchiglia [7] demonstrate that gloss-based similarity
measuring algorithms (matchers) showed the best matching
performance. These matchers compute the cosine similarity
between the glosses (definitions) provided by WN for the
given words. Consequently, we integrate these matchers with
the syntactic matching inOptima. However, these matchers
do not utilize the structure of WN –synsetsand how they
relate to each other – and associated statistical knowledge.
Hence, we also include another popular and competitive
method [15], which uses WN’s structure. As we seek to
evaluate the incremental utility of WordNet, we augment the
existing syntactic similarity inOptima with these WN-based
similarity measures.

A. Adding WordNet-based Similarity

A known limitation of Lin’s method [15] is its poor per-
formance when the concept labels are word phrases instead
of single words. In this case, we evaluate the WN-based
similarity using the gloss-based matcher that accumulates
the glosses of each word in the phrase. Consequently, we
use Lin’s approach if both labels are single words, otherwise
the gloss-based matcher is utilized. We denote this way of
utilizing WN usingSem.

Lin proposes the use of information content in computing
the semantic similarity between labels using WN:

Lin(xa, yα) =
2 × IC(lcs(xa, yα))

IC(xa) + IC(yα)
(1)
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Figure 1. Our integrated similarity measure as a function of the WN-based
semantic similarity (Sem) and Smith-Waterman based syntactic similarity
(Syn). Notice that the value is lower if semantic similarity is low but
syntactic is high compared to vice versa.

Here, the information content (IC) is computed by looking
up the frequency count of its argument word in standard
corpora [16]. The term,lcs(xa, yα), is the least common
subsumer of the two words,xa and yα, within the WN
hierarchy.Lin is guaranteed to be between 0 and 1.

Let xa, yα be the two concepts for which the similarity
to be measured and the number of words in each concepts
be wa andwα respectively then the time complexity of the
Lin similarity is O(wa.wα.sa.sα.h) [17]. Here the number
of senses in WN forxa, yα aresa andsα with h being the
maximum depth of both the concepts in WN hierarchy. The
time complexity of the gloss based similarity would be then,
O(wa.wα.sa.sα.ga.gα), wherega andgα are the maximum
number of words in any single gloss in WN for concepts
xa and yα respectively. Note that the number of words in
a concept and the depth of the words in the WN hierarchy
determines the complexity of computing its similarity using
WN.

There is no standard way of integrating WN-based simi-
larity with syntactic measures. We define a normalized 3D
function that maps a given pair of semantic and syntactic
similarity to the integrated value. In order to generate
this function, we observe that labels that are syntactically
similar (such ascat and bat) may have different meanings.

Table I
ONTOLOGIES FROMOAEI 2009PARTICIPATING IN OUR EVALUATION

AND THE NUMBER OF NAMED CLASSES AND PROPERTIES IN EACH.
NOTICE THAT OUR EVALUATION INCLUDES REASONABLY LARGE

ONTOLOGIES AS WELL.

Ontology Named Classes Properties
101 37 70
205 36 69
301 16 40
302 14 30
303 57 72
304 41 49
ekaw 74 33
sigkdd 50 28
iasted 150 41
cmt 30 59
edas 104 50
confOf 39 36
conference 60 64

Because we wish to meaningfully map entities, semantic
similarity takes precedence over syntactic. Consequently,
high syntactic but low semantic similarity results in a lower
integrated similarity value in comparison to low syntactic
but high semantic similarity. We model such an integrated
similarity measure as shown in Fig. 1 and give the function
in Eq. 2. Our integrated similarity function is similar to a 3D
sigmoid restricted to the quadrant where the semantic and
syntactic similarities range from 0 to 1. One difference from
the exact sigmoid is due to the specific property it must have
because semantic similarity takes precedence over syntactic.

Int(xa, yα) = γ
1

1 + et·r−c(Sem)
(2)

Here,γ is a normalization constant;r =
√

Syn2 + Sem2,
which produces the 3D sigmoid about the origin;t is a
scaling factor andc(Sem) is a function of the semantic

similarity as shown below:c(Sem) =
2

1 + et′·Sem(xa,yα)−c′

wheret′ is the scaling factor andc′ is the translation factor,
if needed. The specific function in Fig. 1 is obtained when
t = 4, t′ = 3.5, andc′ = 2.

IV. EXPERIMENTS

As we mentioned previously, alignment algorithms have
used lexical databases such as WN based on the potential
improvement in the alignment that it could generate. Fur-
thermore, past studies of using WN do not take into account
the increased computational load that utilizing WN entails.
We analyze the implications of using WN on the alignment
performance in the context ofOptima.

A. Methodology

We utilized execution time as an indicator of the compu-
tational load. In order to incorporate execution time within
our experimentation, we measure the maximumrecall and
F-measurethatOptima attains on a pair of ontologies given



varying execution time. We evaluated recall and F-measure
because integrating WN typically results in improved recall
but reduced precision, which would be collectively reflected
in the F-measure. We measured recall and F-measure as
follows:

Recall=
Number of true mappings discovered byOptima

Total number of true mappings between the ontologies

Precision=
Number of true mappings discovered byOptima

Total number of mappings discovered byOptima

F-measure=
2 × Recall× Precision

Recall+ Precision

The alignment performance was measured with the inte-
grated similarity measure and independently using just the
syntactic similarity between node labels, in order to evaluate
the utility of WN. We used OAEI in its recent version, 2009,
as the testbed for benchmarking. Within the benchmark, we
mostly focus on the track that involves real-world ontologies
for which the reference (true) alignment was provided by
OAEI. These ontologies are not created or altered for
purposes related to the benchmark and were obtained by
OAEI from the Web. This includes all ontology pairs in
the 300 range which relate tobibliography, and expressive
ontologies in theconferencetrack all of which structure
knowledge related to conference organization. Because we
wish to evaluate the utility of WN in practical use, we
focused on real-world ontologies. However, we selected one
pair of ontologies specifically tailored by the benchmark that
contained synonyms of node labels. We list the ontologies
participating in our evaluation in Table I and provide an
indication of their sizes.

We ran each execution – with WN and without – until
there was no improvement in the performance. During the
execution, we recorded the recall and F-measure every
time it changed along with the time consumed till then.
Because of the iterative nature ofOptima, the alignment
performance usually improves as more time is allocated
until the EM converges to a maxima. We note that we seed
both executions with the same initial alignment to facilitate
comparison.

B. Results and Analysis

While we ran our evaluations on 23 pairs of ontologies,
in this section we focus on a set of 6 pairs, which are
representative of the different trends that we obtained. We
show our evaluations on some of the remaining pairs in the
Appendix. Because of the large number of pairs that we
evaluated on (23 in all), we ran the tests on three different
computing platforms. Two of these were Red Hat machines
with Intel Xeon Core 2, processor speed of about 3 GHz
with 4GB of memory, while the third was a Windows Vista
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Figure 2. (a) Final recall and (b) final F-measure generated byOptima
on 6 representative ontology pairs, with the integrated similarity measure
and with just the syntactic similarity between entity labels.

machine with Intel Xeon Core 2, 2.4 GHz processor and
4GB of memory.

We show a summary of the final recall and F-measure
that was obtained on the 6 pairs with WN integrated and
with just the syntactic similarity measure, in Figs. 2(a, b).
Our focus is on the change in these measures, and not their
overall values which could be poor for some ontology pairs.
As we may expect, for many of the ontology pairs, the final
recall with WN integrated is higher than the recall with
just the syntactic similarity. For example, while aligningthe
ontology pair(101, 301), the alignment process with WN
matches the conceptMonographagainst the conceptBook,
which is not possible with using just the syntactic similarity.
The difference in performance is statistically significantwith
p-value of 0.057 as measured using a paired Student’s t-test.
On the other hand, integrating WN decreased the recall for
a single pair,(cmt,sigkdd). However, the improvement in F-
measure due to WN reduces to the extent where it loses
significance (p-value=0.184).

In Fig. 3, we detail the performances w.r.t. execution
time. Each data point is the maximum recall or F-measure,
as appropriate, that could be obtained given the execution
time. Notice that Figs. 3(a, b, e) all show an improved recall
with WN integrated. In particular, ontology 205 in the pair
(205, 101) is altered by OAEI to include synonyms of labels
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Figure 3. (a) − (f): Recall (left) and F-measure (right) for 6 of the 23 ontology pairs that we used in our evaluations. We show the evaluationswhen
the alignment algorithm utilized an integrated similarity involving WN and just the string-based similarity without WN. Notice the different trends in our
evaluations. Ontologies related toconferenceconsume more time because they are larger.

in 101, as its entity labels. For example,title is altered to
heading. In some cases, the WN-based integrated similarity
leads to better recall eventually. However, the improvement
is obtained after spending significantly more time on the
alignment process; in some cases approximately an order of
magnitude more time was consumed to achieve a significant
increase, as in Fig. 3(a). The additional time is spent on
initializing WN and querying the database. Further, in two
of these, aligning without WN results in better recall for an
initial short time span (Fig. 3(b, e)), before the performance
with WN exceeds it.

On the other hand, some ontology pairs did not exhibit an
improved recall with WN (see Figs. 3(c, d, f)). Surprisingly,
conference ontology pair(cmt, sigkdd) results in worse
recall with WN integrated (Fig. 3(f)). This is because(cmt,
sigkdd)pair has several concepts with compound words or
phrases as labels. As one example,Meta-Reviewappears
in cmt ontology andRegistrationNon–Memberappears in

sigkdd ontology. Tokenizing these correctly and locating
individual glosses in WN is often challenging1, resulting
in low semantic and therefore low integrated similarity.
However, the string-based similarity resulted in better label
matching.

Our F-measure evaluations of the alignments tell another
story. We predominantly found that the improvement in
F-measure due to WN was smaller in comparison to the
improvement in recall. Thus, the use of WN often leads
to reduced precision than if we did not use it. Due to its
consideration of synonyms and other lexical senses, semantic
similarity is often high for multiple concepts across the

1The conceptMeta-Reviewshould be tokenized into two words(Meta,
Review)while RegistrationNon–Memberneeds to be tokenized into two
words (Registration, NonMember)but should not be tokenized into three
words (Registration, Non, Member). The hyphen (–) is a delimiter in
the former concept but should be just ignored in the later concept. This
tokenization is demanded by WN matchers sinceMetaReviewdoes not
exist in WN but the wordNonMemberexists in WN.



Table II
THE DIFFERENT ONTOLOGY PAIRS COULD BE GROUPED INTO4 TRENDS OF ALIGNMENT PERFORMANCE BASED ON THE RECALL ANDF-MEASURE

EVALUATIONS .

Max. recall +WN > Max. recall
-WN

Max. recall +WN = Max. recall -
WN

Max. recall +WN <
Max. recall -WN Count

Max. F-measure +WN >
Max. F-Measure -WN

(205, 101); (301, 101); (confOf,
ekaw); (edas, iasted); (cmt, confer-
ence); (conference, iasted); (con-
ference, ekaw)

none none 7

Max. F-measure +WN =
Max. F-Measure -WN none

(304,101); (cmt, confOf); (ekaw,
iasted); (ekaw, sigkdd); (iasted,
sigkdd); (conference, sigkdd)

none 6

Max. F-measure +WN <
Max. F-Measure -WN none

(302, 101); (303, 101); (confOf, edas);
(edas, sigkdd); (edas, ekaw); (cmt,
edas); (cmt, ekaw); (conference, con-
fOf); (conference, edas)

(cmt, sigkdd) 10

Count 7 15 1 23

two ontologies. However, not all of these possible matches
appear in the true alignment. For example, while the final
recall in Fig. 3(d) does not change when WN is utilized,
the final F-measure drops to below what we could get
when just the syntactic similarity is used inOptima for the
alignment. The mapping between conceptsConferencepart
and ConferenceEventin ontologiesConferenceand edas,
respectively, is one such example that is found byOptima
with WN but is incorrect and therefore leads to lower
precision. Furthermore, the increased execution time due to
WN for achieving an F-measure is significant (p-value =
0.013).

Overall, we saw general trends where,(i) the final recall
and F-measure due to WN improved considerably although
the lower values of recall and F-measure were achieved
without the use of WN in much less time;(ii) alignment
with WN exhibited similar or better recall but poorer F-
measure due to reduced precision; and(iii) integrating
WN degraded the alignment performance, although this was
rare. We tabulate the alignment performance on all the 23
different pairs based on the trends, in Table II. Interestingly,
15 of the 23 pairs that we used did not exhibit an increase
in recall due to the additional use of WN, and 9 of these
showed a decrease in overall F-measure.

C. Discussion

Our results in the previous section demonstrate that in-
tegrating a lexical database such as WN may not always
be worthwhile especially if the execution time is a concern
as well. In particular, the performance in terms of recall
or F-measure did not improve for 15 of the 23 ontology
pairs when an integrated similarity measure involving WN
was utilized. However, the execution time increased consid-
erably. Clearly, the utility of WN for these ontology pairs
is negligible. We investigated these pairs in greater detail
to ascertain the differential properties that could lead to
minimal performance improvement on using WN. These
would allow us to make an informed decision on whether
WN would be worthwhile for a given ontology pair.

• Interestingly, ontologies that have a deep hierarchy (“tall”
ontology) may consume an excessive amount of time when
aligned using WN. This is because such ontologies tend to
have several specialized classes, and identifying the least
common subsumer in WN required by algorithms such as
Lin [15] requires traversing a large portion of the WN
hierarchy (see section III-A). An example of this is the
ontology pair,(conference, edas), in which the ontologyedas
is a tall ontology.
• Furthermore, if such ontologies need to be aligned with
those that have a shallow hierarchy (“short” ontology), WN
will likely suggest several matches between the specific
concepts2 of the tall ontology and more general concepts
of the short ontology, thereby leading to reduced precision.
• We may search WN using single words only. Conse-
quently, compound words or phrases appearing as entity
labels in an ontology need to be appropriately tokenized and
a single representative word or WN-based similarity measure
must be obtained. This is further complicated if the phrases
are not formatted in a uniform manner making tokenization
challenging. An example of this is the ontology pair,(cmt,
sigkdd), which leads to poor performance with WN due to
the difficulty in improving over the seed map (see Fig. 3(f)).

V. RELATED WORK

Giunchiglia et al. [7] studied the alignment performance
in terms of recall and precision of a set of semantic matchers
between concept labels, which use WN as a source of
background knowledge. While this study reported significant
improvement in alignment quality on small OAEI 2006
ontologies due to WN, it did not evaluate the increased
execution time. Aleksovski and Harmelen [18] investigated
the impact of using a background knowledge ontology in
ontology matching. Again, this effort did not explore the
computational trade off in the form of increased execution

2Specific concepts (e.g.,Presenterin ”tall” edasontology) appear at the
lower part of the WN hierarchy tree compared to general concepts (e.g.,
Personin ”short” confOfontology) which stay closer to the root of the WN
tree.



time required for leveraging an external knowledge store
for ontology alignment. Similarly, Lin and Sandkuhl [9]
surveyed different ways of utilizing WN in aligning ontology
pairs. These approaches have predominantly focused on
comparing different ways of integrating WN.

While the previous investigations have compared various
ways of exploiting WN for ontology alignment, a com-
prehensive study of the utility of WN especially keeping
in mind the increased computational load has not been
performed. This is a pertinent question in the context of
emerging evidence that lexical databases may not always
improve results [8]. Indeed, OAEI questions the utility of
background knowledge due to the relative poor performances
of ontology alignment algorithms that utilize background
knowledge in the anatomy track of its 2009 campaign [11].
Because automatically aligning ontologies is computation-
ally intensive, which is exacerbated as the ontologies become
larger and real-time needs for ontology alignment emerge,
we think that execution time is a critical component.

VI. CONCLUSION

While using WN in addition to syntactic string-based sim-
ilarity measures does improve the quality of the alignment
in many cases, it does so after consuming significantly more
time. Furthermore, the precision of the alignment typically
reduces leading to much reduced improvement in F-measure.
We also reported on many ontology pairs where WN did
not improve on the final recall or F-measure, but consumed
more time. Clearly, the utility of WN is questionable in
these cases. We analyzed the ontologies for which using WN
did not improve the performance, and provided a few rules
of thumb related to characteristics of ontologies for which
WN should be utilized cautiously. Based on our results and
analysis, our recommendation to the ontology alignment
research community is not to discourage the use of WN
but allow WN usage within the alignment process to be
optional, and its use be recommended after analyzing the
characteristics of the ontologies.

Of course, our study could be enhanced by evaluating the
utility of WN in the context of multiple alignment algorithms
and more ways of using WN. However, our focus on the
relative change in performance due to WN reduces the effect
of the choice of the underlying algorithm on the results,
and we sought to select multiple competitive WN-based
matchers with prior support. As such, we think that our
results reflect the general pattern. Additionally, we used 23
independently developed real-world ontology pairs from two
distinct domains (bibliography and conferences), which we
think is a relatively versatile dataset from which to general-
ize our conclusions. Furthermore, emerging applications of
ontology alignment such as in semantic Web services and
search bring new emphasis on alignment execution time.
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APPENDIX

REST OF THE RESULTS

We evaluated the recall and F-measure of the alignment
generated byOptima when WordNet is integrated and that
of the alignment when just the syntactic similarity is used.
While we showed the results and discussed the trends for 6
representative ontology pairs out of 23 in Section IV-B, the
results for the rest of the ontology pairs are given below for
completeness.
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Figure 4. Recall and F-measure for 2 ontology pairs of the same trend
where the final recall and F-measure with WN integrated is higher than the
recall and F-measure with just syntactic similarity.

We categorized the ontology pairs based on the trends
that their recall and F-measure exhibited. In Fig. 4, we show
another 2 out of 7 of those pairs for which the final recall and
F-measure due to WN improved considerably although, in
some cases, the intermediate values of recall and F-measure
were achieved byOptima without WN in less time.

Next, we show pairs for which the alignment with WN
showed similar recall and F-measure as achieved by aligning
with just string similarity. Six ontology pairs exhibit this
trend and we show 2 of them in Fig. 5. Notice the increased
execution time due to WN for similar recall and F-measure
values.
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Figure 5. Recall and F-measure for 2 ontology pairs of the same trend
where the final recall and F-measure with WN integrated did not improve
on the recall and F-measure without WN.
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Figure 6. Both the ontology pairs shown here exhibit a final recall with
WN that is same as the recall without it. However, the F-measure with WN
is less than the F-measure without WN.

Finally, 10 ontology pairs resulted in recall with WN
that was similar to recall with just the syntactic string
similarity, but poorer F-measure while aligning with WN due
to reduced precision. When the additional execution time is
taken into consideration, the utility of WN is questionable
in these cases. We show 2 of these pairs in Fig. 6.


